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A modulus-based nonmonotone line search method is proposed for nonlinear complemen- 

tarity problem. The considered problem is first reformulated to a nonsmooth nonlinear sys- 

tem based on the modulus-based decomposition. Then a nonmonotone line search method 

using simulated annealing rule is generalized to solve the resulting system. The global con- 

vergence of the proposed method is established under some suitable assumptions. Prelim- 

inary numerical experiments show that, compared with some existing methods, the pro- 

posed method is feasible and effective. 
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1. Introduction 

Consider a nonlinear complementarity problem (NCP for short) as follows: 

find x ∈ R 

n , s.t. x ≥ 0 , f (x ) ≥ 0 , x T f (x ) = 0 , (1.1)

where f : R 

n → R 

n is a nonlinear mapping. Evidently, problem (1.1) reduces to a linear complementarity problem (LCP for

short) if f is linear. Throughout this paper, the solution set of problem (1.1) , denoted by X 

∗, is assumed to be nonempty. 

NCP has received much attentions for various applications arising in mathematical programming, economic equilibrium,

engineering design and others [1–3] . Many efficient algorithms have been developed for NCP in literature. Semismooth

equations (based on nonlinear complementarity problem function, NCP-function) approaches are state-of-the-art methods.

Sun and Qi [4] presented several NCP-functions and investigated their properties, and provided a numerical comparison

between the behavior of different NCP-functions. Among the NCP-functions, the Fischer–Burmeister function [5] (FB NCP-

function hereafter) is a popular choice since it has some interesting properties. Based on the FB NCP-function, various ef-

fective methods were developed. Luca, Facchinei and Kanzow [6] exploited an extended Newton’s method and established

the global convergence and quadratic convergence rate. Jiang and Qi [7] proposed a hybrid method combining the general-

ized Newton’s method and steepest descent method, and established the global convergence and Q-quadratic convergence

rate. Kanzow and Pieper [8] presented a Jacobian smoothing method (which combines nonsmooth Newton method and

smoothing methods) to the nonsmooth system resulted by FB NCP-function. Chen, Chen and Kanzow [9] proposed a modi-

fied FB NCP-function which has some stronger theoretical properties compared to the classical FB NCP-function. Qi and Yang

[10] proposed a Lagrangian globalization algorithm based on NCP-functions. Chen and Pan [11] presented a family of new

NCP-functions and a descent method based on these NCP-functions. Chen, Zhang and Fukushima [12] extended NCP-function
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to stochastic LCP. Ma [13] proposed a smoothing and regularization Newton method for NCP with P 0 -NCP-function 

1 , and so

on. 

Another interesting approach for NCP is a class of methods based on the theory for maximal monotone operators and

variational inequalities. In this framework, some effective iteration methods were developed, see [15–18] . He, Liao and Yuan

[19] proposed a logarithmic-quadratic proximal method which consists of a relaxed prediction and an explicit correction.

Xu, He and Yuan [20] presented a hybrid logarithmic-quadratic proximal method. In fact, the logarithmic-quadratic proxi-

mal type methods are essentially as same as the projection and contraction method under the framework for variational

inequality. 

For LCP, Murty [21] proposed a modulus iterative method by reformulating it to a fixed-point equation. Bai [22] con-

structed a general framework based on modulus-based matrix splitting (MBMS hereafter), which is very effective in some

realistic applications. Zheng and Yin [23] proposed an accelerated MBMS method for large-scale sparse LCP, and established

the global convergence when the system matrix is H + matrix or positive definite. Moreover, some modified MBMS methods

based on the relaxation technique are also effective for LCP, see [24,25] . 

Recently, some MBMS methods were also developed to solve a class of weak NCP [26–28] . Xie, Xu and Zeng [29] proposed

a two-step MBMS method based on fixed-point iteration. The availability of the MBMS type iterative methods mentioned

above are dominated by the splitting of the linear components in the NCP under consideration. By this way, the MBMS

type iterative methods may loose its advantage if mapping f ( x ) in NCP has a high nonlinearity. To overcome these draw-

backs, in this paper we propose a modulus-based nonmonotone line search method for problem (1.1) . Under some suitable

assumptions on nonlinear mapping f ( x ) of problem (1.1) , we investigate the global convergence of the proposed method. 

The rest of this paper is organized as follows. A modulus-based nonmonotone line search method is proposed in the next

section. In section 3, the global convergence of the proposed method is established under some suitable assumptions. In

section 4, some preliminary numerical results are presented to show the validity and effectiveness of the proposed method.

Section 5 concludes the paper with some final remarks. 

2. The modulus-based nonmonotone line search method 

Throughout this paper, the Euclidean norm ‖ · ‖ is used for vector. The Clarke’s subdifferential [30] of f at x is denoted

by ∂ f ( x ). The identity matrix is denoted by I , the set [ n ] = { 1 , 2 , . . . , n } and Z ++ is the positive integers set. 

Let u ∈ R 

n and 

x = | u | + u, f (x ) = | u | − u, (2.1)

where absolute value | · | is component-wise. Then we have 

x ≥ 0 , f (x ) ≥ 0 , and x T f (x ) = 0 . (2.2)

Consider the non-smooth nonlinear system of equations 

F (u ) = 0 , (2.3) 

where F (u ) := f ( u + | u | ) + u − | u | . Then, we can obtain a solution of problem (1.1) via solving the nonlinear equations (2.3) .

Moreover, we show that the system (2.3) is identical to the problem (1.1) with explicit relation between the solutions of

these two systems. 

Theorem 2.1. If u ∈ R 

n is a solution of Eq. (2.3) , then x defined by x := | u | + u is a solution of problem (1.1) . Conversely, if x ∈ R 

n

is a solution of the problem (1.1) , then u defined by u := 

1 
2 (x − f (x )) is a solution of Eq. (2.3) . 

Proof. Suppose that u ∈ R 

n is a solution of the nonlinear equations (2.3) . Let x := | u | + u . By (2.3) , we have f (x ) = | u | − u .

Which combined with the fact 

| u | + u ≥ 0 , | u | − u ≥ 0 , and (| u | + u ) T (| u | − u ) = 0 (2.4)

implies that x = | u | + u solves the problem (1.1) . 

Conversely, suppose that x ∈ R 

n is a solution of problem (1.1) . Let u := 

1 
2 (x − f (x )) . We distinguish the following three

cases: (i) when x i = 0 , f i ( x ) > 0 with i ∈ [ n ], one have 

(| u | + u ) i = 

f i (x ) 

2 

+ 

− f i (x ) 

2 

= 0 = x i and (| u | − u ) i = 

f i (x ) 

2 

− − f i (x ) 

2 

= f i (x ) . 

(ii) when x i > 0, f i (x ) = 0 with i ∈ [ n ], one have 

(| u | + u ) i = 

x i 
2 

+ 

x i 
2 

= x i and (| u | − u ) i = 

x i 
2 

− x i 
2 

= 0 = f i (x ) . 

(iii) when x i = 0 , f i (x ) = 0 with i ∈ [ n ], one have 

(| u | + u ) i = 0 = x i and (| u | − u ) i = 0 = f i (x ) . 
1 Mapping f : R n → R 
n is a P 0 -function if max 

1 ≤i ≤n,x i � = y i 
(x i − y i )( f i (x ) − f i (y )) ≥ 0 , ∀ x, y ∈ R n , x � = y, see [14] . 



X. Zhang and Z. Peng / Applied Mathematics and Computation 387 (2020) 125175 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, we have that | u | + u = x and | u | − u = f (x ) , which deduces that f (| u | + u ) = | u | − u . Hence, u = 

1 
2 (x − f (x ))

solves nonlinear system (2.3) . �

The problem (1.1) is also equivalent to finding a global minimizer of the unconstrained optimization problem 

min 

u ∈ R n 
h (u ) := ‖ F (u ) ‖ 

2 . (2.5)

Many researchers investigated the equivalence relation between problem (2.2) and (2.5) , and proposed some efficient meth-

ods for NCP based on solving its equivalent optimization problem, for example, see Mangasarian and Solodov [31] . However,

it is hard to find a global minimizer of problem (2.5) in general since it may be nonconvex. In the proposed method, we

only use h ( u ) as a merit function. It is obvious that, if h (u ) = 0 then F (u ) = 0 . 

Recently, Dong, Li and Peng [32] proposed a simulated annealing-based BB gradient method (SABB for short) for un-

constrained optimization problem, in which the BB step-size [33] and a nonmonotone line search technique based on the

improved Wolfe line search [34] are used to get a predictor, and the predictor is accepted as the next iterate via a simulated

annealing rule. By generalizing the SABB method to solve nonlinear system (2.3) , where h ( u ) serves as a merit function

and −F (u ) provides a search direction, we propose a modulus-based nonmonotone line search method for problem (1.1) .

Algorithm 1 below summarizes the proposed method in details. 

Algorithm 1 The modulus-based nonmonotone line search method, MBNLS. 

s0 . Given a tolerance ε > 0 , a starting point u 0 ∈ R 

n . Let γ ∈ (0 , 1) , β ∈ (0 , 1) , T 0 > 0 , c ∈ (0 , 10 −2 ) , 2 ≤ θ ∈ Z ++ , 0 < αmax ≤
10 2 , and α0 ∈ (0 , αmax ] . Set k := 0 . 

s1 . If h (u k ) ≤ ε, then stop, and accept x ∗ = | u k | + u k as a numerical solution. 

s2 .] Let λk = 1 , and 

z k = u k − λk αk F (u k ) , ( 2.6)

and compute h (z k ) . Let p k = e 
− 	k 

T k , where 

	k = h (z k ) − ( h (u k ) − cλk αk h (u k ) ) . ( 2.7)

s3 . Pick a random number r k ∈ 

[ 
e −θ , e −

1 
θ

] 
. If 

p k ≥ r k , ( 2.8)

then u k +1 = z k and go to s4 . Otherwise, let λk := βm k where m k is the smallest nonnegative integer such that 

h (u k − λk αk F (u k )) ≤ h (u k ) − cλ2 
k αk h (u k ) , ( 2.9)

and let u k +1 = u k − λk αk F (u k ) . 

s4 . Update step-size αk +1 by 

αk +1 = min 

{‖ s k ‖ 

2 

s T 
k 
y k 

, αmax 

}
, ( 2.10)

where s k = u k +1 − u k and y k = F (u k +1 ) − F (u k ) . 

s5 . Let T k +1 := γ T k , k := k + 1 , and go to s1 . 

Remark 2.2. 

(1) It is easy to derive from (2.8) that 

h (z k ) ≤ h (u k ) − cλ2 
k αk h (u k ) − T k ln r k . (2.11)

Combining (2.9) and (2.11) , we get 

h (u k +1 ) ≤ h (u k ) − cλ2 
k αk h (u k ) − δk T k ln r k , (2.12)

where δk = 1 if (2.8) holds, otherwise δk = 0 . 

(2) To guarantee the condition (2.12) being well-defined, we set αmax ≤ 10 2 and c < 10 −2 such that 0 < c αk ≤ c αmax < 1. 

3. Convergence analysis 

In this section we will prove that, any convergent sub-sequence { u k j } of sequence { u k } generated by Algorithm 1 con-

verges to a solution of system (2.3) , which results that sequence { x k j := | u k j | + u k j } converges to a solution of NCP (1.1) .

Given u 0 ∈ R 

n , γ ∈ (0, 1), 2 ≤ θ ∈ Z ++ and T 0 > 0, we define the level set 

�0 := 

{ 

u ∈ R 

n 

∣∣∣ h (u ) ≤ h (u 0 ) + (1 − γ ) −1 θT 0 

} 
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and 

�′ 
0 := 

{ 

u 

′ ∈ R 

n 

∣∣∣ u 

′ = | u | + u, u ∈ �0 

} 

. 

If �0 is bounded, �′ 
0 

is obviously bounded. We need commonly the boundedness of level set associated to some merit

function [35] . We make the following assumptions. 

Assumption 3.1. 

(a) The set �0 is nonempty and bounded; 

(b) Function f ( x ) is locally � −Lipschitz continuous in an open ball B 0 := 

{ 

u ∈ R 

n 

∣∣∣ ‖ u ‖ < r 0 

} 

containing �0 ∪ �′ 
0 
; 

(c) The generalized Jacobian operator ∂F ( u ) is continuous for all u ∈ �0 , and the generalized Jacobian matrix F ′ ( u ) ∈ ∂F ( u )

is δ-strongly positive definite, i.e., there exists δ > 0 such that u T F ′ ( u ) u ≥ δ‖ u ‖ 2 , ∀ F ′ ( u ) ∈ ∂F ( u ), ∀ u ∈ �0 . 

Although merit function h ( u ) is nonsmooth, the subgradient vector of h ( u ) is also denoted by ∇h ( u ) for convenience. 

Remark 3.1. By Assumption 3.1 (c), F ( u ) is strictly monotone 2 on �0 (Proposition 2.2, [36] ). Moreover, −F (u ) T ∇h (u ) =
−F (u ) T F ′ (u ) F (u ) ≤ 0 (the equality holds if and only if F (u ) = 0 ), which implies that −F (u ) is a descent direction of merit

function h ( u ). 

Proposition 3.2 (Lemma 2.2, [37] ) . Suppose that D ⊂ R 

m is C-quasiconvex and F : D → R 

n is locally � -Lipschitz continuous, then

F is � C-Lipschitz continuous over set D . 

Lemma 3.3. If Assumption 3.1 holds, then F ( u ) and h ( u ) are Lipschitz continuous in set B 0 . 

Proof. let g(u ) = | u | + u, then F (u ) = f (g(u )) + u − | u | . Since f ( x ) is locally � -Lipschitz continuous in set B 0 , for all x ∈ B 0
there exists a neighborhood N (x, ε x ) ⊂ B 0 such that 

‖ f (x ) − f (y ) ‖ ≤ � ‖ x − y ‖ , ∀ y ∈ N (x, ε x ) . 

If u ∈ B 0 , it follows from �′ 
0 

⊂ B 0 that g ( u ) ∈ B 0 . There exists a neighborhood N 

(
g(u ) , ε g(u ) 

)
⊂ B 0 such that 

‖ f (g(u )) − f (u 

′ ) ‖ ≤ � ‖ g(u ) − u 

′ ‖ , ∀ u 

′ ∈ N 

(
g(u ) , ε g(u ) 

)
. (3.1)

Hence, there is ε u ∈ 

(
0 , 

ε g(u ) 

2 

)
such that for all u ∈ B 0 and ∀ v ∈ N (u, ε u ) ⊂ B 0 , we have g(v ) ∈ N 

(
g(u ) , ε g(u ) 

)
. By (3.1) and

Triangle-inequality, we get 

‖ f (g(u )) − f (g(v )) ‖ ≤ � ‖ g(u ) − g(v ) ‖ ≤ 2 � ‖ u − v ‖ . 

Then 

‖ F (u ) − F (v ) ‖ = ‖ 

[ f (g(u )) + u − | u | ] − [ f (g(v )) + v − | v | ] ‖ 

≤ ‖ 

f (g(u )) − f (g(v )) ‖ 

+ ‖ 

(u − | u | ) − (v − | v | ) ‖ 

≤ (2 � + 2) ‖ u − v ‖ . 

(3.2) 

Which implies that F ( u ) is locally (2 � + 2) -Lipschitz continuous in B 0 . Note that B 0 is convex, it is easy to deduce that B 0 is

1-quasiconvex 3 By Proposition 3.2 , F ( u ) is (2 � + 2) -Lipschitz continuous in set B 0 . 

Since B 0 is bounded and h ( u ) is bounded in B 0 , there exists a constant � B 0 > 0 such that 
∣∣h (u ) 

∣∣ ≤ � B 0 , ∀ u ∈ B 0 . By Cauchy–

Schwarz inequality and (3.2) , we get ∣∣h (u ) − h (v ) 
∣∣ = 

∣∣ < F (u ) − F (v ) , F (u ) + F (v ) > 

∣∣
≤ ‖ F (u ) − F (v ) ‖‖ F (u ) + F (v ) ‖ 

≤ (2 � + 2) ‖ u − v ‖ ( 
√ 

h (u ) + 

√ 

h (v ) ) 
≤ 4(� + 1) 

√ 

� B 0 ‖ u − v ‖ , ∀ u, v ∈ B 0 . 

(3.3) 

Hence h ( u ) is 
(
4(� + 1) 

√ 

� B 0 

)
-Lipschitz continuous in B 0 . �

Lemma 3.4. If Assumption 3.1 holds, then the line search rule (2.9) in Algorithm 1 is well defined. 

Proof. By Assumption 3.1 and Lemma 3.3 , we have that h ( u ) and F ( u ) are Lipschitz continuous in set B 0 . Which follows that

h ( u ) is strictly continuous (Definition 9.1 (b), [38] ) in B 0 . Then, by the extended mean-value theorem (Theorem 10.48, [38] )

and the fact that B 0 is an open convex set, we have 

h (u k ) − h (u k − λk αk F (u k )) = 2 λk αk F (u k ) 
T F ′ ( ̂  u k ) F ( ̂  u k ) , 
2 A mapping F is strictly monotone on S if for all distinct pairs x, y ∈ S, < x − y, F (x ) − F (y ) >> 0 , see [36] . 
3 A set D ⊂ R 

n is said to C-quasiconvex with C ≥ 1 , if every pairs x, y ∈ D can be jointed by a curve γD in D such that length (γD ) ≤ C‖ x − y ‖ , see Section 

2.1 in [37] . 



X. Zhang and Z. Peng / Applied Mathematics and Computation 387 (2020) 125175 5 

 

 

 

 

 

 

 

 

 

where ˆ u k = u k − τλk αk F (u k ) with τ ∈ (0, 1), and consequently, 

h (u k ) − h (u k − λk αk F (u k )) 

λk αk h (u k ) 
= 

2 F (u k ) 
T F ′ ( ̂  u k ) F ( ̂  u k ) 

F (u k ) T F (u k ) 
. (3.4)

Taking the limits both sides of (3.4) as λk ↓ 0, and using Assumption 3.1 (c) and continuity of F ( u ), we get 

lim 

λk → 0 

h (u k ) − h (u k − λk αk F (u k )) 

λk αk h (u k ) 
≥ 2 δ. (3.5)

Hence, for all 0 < ε < δ, there exists a positive integer N 1 large enough (which deduces that λk = βN 1 is small enough) such

that 

h (u k ) − h (u k − λk αk F (u k )) 

λk αk h (u k ) 
≥ 2 δ − ε > δ. (3.6)

Since c is a constant, there exists a positive integer N 2 such that c λk ≤ δ where λk = βN 2 . Let m k = max { N 1 , N 2 } , we have

that 

cλk ≤ δ < 

h (u k ) − h (u k − λk αk F (u k )) 

λk αk h (u k ) 

holds for λk = βm k . Which concludes that line search rule (2.9) in Algorithm 1 is well defined. �

Lemma 3.5. If sequence { u k } generated by the MBNLS method, then { u k } ⊂�0 . 

Proof. Let ηk = −δk T k ln r k where δk ∈ {0, 1}, by T k = γ k T 0 and γ ∈ (0, 1), we have ∑ 

k ≥0 

ηk = −
∑ 

k ≥0 

δk T k ln r k ≤ −
∑ 

k ≥0 

T k ln r k 

= −
∑ 

k ≥0 

γ k T 0 ln r k ≤ θT 0 
∑ 

k ≥0 

γ k 

≤ (1 − γ ) −1 θT 0 . 

(3.7)

The last second inequality follows from r k ∈ 

[ 
e −θ , e −

1 
θ

] 
. By (2.12) , we have 

h (u k +1 ) ≤ h (u k ) − cλk h (u k ) − δk T k ln r k ≤ h (u k ) − δk T k ln r k 

≤ h (u 0 ) −
k ∑ 

i =0 

T i ln r i ≤ h (u 0 ) + (1 − γ ) −1 θT 0 

holds for all k ≥ 0, which implies that { u k } ⊂�0 . �

Theorem 3.6. Suppose that Assumption 3.1 holds, and sequence { αk } is generated by the MBNLS method. Then, there exists α∗ > 0

such that 

αk ≥ α∗, ∀ k. 

Proof. By Remark 3.1 , F ( u ) is strictly monotone on �0 which implies 

〈 u k +1 − u k , F (u k +1 ) − F (u k ) 〉 > 0 . 

By Lemma 3.3 , F ( u ) is (2 � + 2) -Lipschitz continuous in set B 0 . Thus 

‖ u k +1 − u k ‖ 

2 

〈 u k +1 − u k , F (u k +1 ) − F (u k ) 〉 ≥
‖ u k +1 − u k ‖ 

2 

‖ u k +1 − u k ‖‖ F (u k +1 ) − F (u k ) ‖ 

≥ 1 

2 � + 2 

, 

combining with the update scheme (2.10) yields 

αk ≥ min 

{ 

1 

2 � + 2 

, αmax 

} 

, ∀ k. 

Let α∗ = min 

{
1 

2 � +2 , αmax 

}
, the assertion follows. �

Proposition 3.7. (Lemma 1, [39] ) Let { a k } and { b k } be positive sequences satisfying a k +1 ≤ (1 + b k ) a k + b k and 
∑ ∞ 

k =0 b k < ∞ ,

then { a k } converges. 

The following theorem establishes the global convergence of the MBNLS method. 

Theorem 3.8. Suppose that Assumption 3.1 holds, and sequence { u k } is generated by MBNLS method. Then, there is a subsequence

{ u k j } ⊂ { u k } such that 

lim 

k j →∞ 

‖ u k j 
− u 

∗‖ = 0 , 
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where u ∗ is a solution of F (u ) = 0 . Consequently, { x k j = | u k j | + u k j } converges to a solution of nonlinear complementarity problem

(1.1) . 

Proof. By Lemma 3.5 , we have { u k } ⊂�0 . By the continuity of h ( u ) and boundedness of �0 , sequence { u k } has at least a

cluster point, we denote it by u ∗. There is a convergent sub-sequence { u k j } ⊂ { u k } such that 

lim 

k j →∞ 

‖ u k j 
− u 

∗‖ = 0 . (3.8) 

By (2.12) 

h (u k +1 ) ≤ h (u k ) − cλ2 
k αk h (u k ) + ηk , ∀ k ≥ 0 , (3.9)

where ηk = −δk T k ln r k > 0 . Set a k = h (u k ) and b k = ηk , we have 

a k +1 ≤ a k − cλ2 
k αk h (u k ) + b k ≤ a k + b k ≤ (1 + b k ) a k + b k . 

By Proposition 3.7 , sequence { h ( u k )} converges and consequently { ‖ F ( u k ) ‖ } converges. Adding (3.9) from k = 0 to K , we

obtain 

c 

K ∑ 

k =0 

λ2 
k αk h (u k ) ≤ h (u 0 ) − h (u K+1 ) + 

K ∑ 

k =0 

ηk ≤ h (u 0 ) + 

K ∑ 

k =0 

ηk . (3.10)

Taking limits on both sides of (3.10) as K → ∞ , and using Theorem 3.6 and (3.7) we have 

∞ ∑ 

k =0 

λ2 
k h (u k ) ≤

1 

cα∗

[ 

c 

∞ ∑ 

k =0 

λ2 
k αk h (u k ) 

] 

≤ 1 

cα∗

(
h (u 0 ) + (1 − γ ) −1 θT 0 

)
< ∞ . 

Which deduces that lim 

k →∞ 

λ2 
k 
h (u k ) = 0 . Combining the convergence of sequence { ‖ F ( u k ) ‖ }, we have 

lim 

k →∞ 

‖ F (u k ) ‖ = 0 or lim inf 
k →∞ 

λk = 0 , (3.11) 

or both. 

If lim 

k →∞ 

‖ F (u k ) ‖ = 0 , the assertion follows. Otherwise, we have lim inf 
k →∞ 

λk = 0 . Without loss of generality, we assume that

lim 

k →∞ 

λk = 0 . Since m k is the smallest nonnegative integer such that λk = βm k ≤ 1 satisfies the line search rule (2.9), we have

h (u k − λ̄k αk F (u k )) > h (u k ) − c ̄λ2 
k αk h (u k ) , (3.12)

where λ̄k = 

λk 
β

. Thus 

c ̄λk > 

h (u k ) − h (u k − λ̄k αk F (u k )) 

λ̄k αk h (u k ) 
. (3.13) 

Taking limits on the both sides of (3.13) and using (3.5) , we get 

0 ≥ lim 

λ̄k → 0 

h (u k ) − h (u k − λ̄k αk F (u k )) 

λ̄k αk h (u k ) 
≥ 2 δ > 0 , (3.14) 

which leads to a contradiction. Hence, the case lim inf 
k →∞ 

λk = 0 fails, we also obtain lim 

k →∞ 

‖ F (u k ) ‖ = 0 . 

The equality lim 

k →∞ 

‖ F (u k ) ‖ = 0 also holds for subsequence { u k j } , i.e., lim 

k j →∞ 

‖ F (u k j ) ‖ = 0 , and equivalently 

lim 

k j →∞ 

F (u k j 
) = 0 . 

By (3.8) and the continuity of F ( u ), we have F (u ∗) = 0 , which implies that subsequence { u k j } converges to a solution of

F (u ) = 0 . By the equivalence, we have { x k j := | u k j | + u k j } converges to a solution of problem (1.1) . �

4. Numerical experiments 

In this section, some preliminary numerical results are presented to verify the performance of the proposed MBNLS

method. The proposed method is compared with hybrid inexact Logarithmic Quadratic Proximal (LQP for short) [20] and

Fisher-Burmeister Semismooth Newton (FBSN for short) [6] . Fifteen test examples are listed in Appendix A . All methods are

coded in MATLAB R2016b and run on a personal computer with 1.80 GHz Intel Core i7 and 8 GB RAM. 

The main computational cost of each iteration and line search used in these methods are listed in Table 1 for

comparisons. 
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Table 1 

The main computational cost of the MBNLS, LQP and FBSN 

methods. 

Methods Main computational 

cost 

Computational cost 

in line search 

MBNLS n n 

LQP 3 n 3 n 

FBSN O ( n 3 ) O ( n 2 ) 

Table 2 

The stopping criteria for the MBNLS, LQP and FBSN methods. 

Methods iter_max cput_max Tolerance 

MBNLS 10000 3600 s ‖ F (u k ) ‖ ≤ 10 −4 

LQP 
∥∥F 

(
1 
2 
(x k − f (x k )) 

)∥∥ ≤ 10 −4 

FBSN 

∥∥F 
(

1 
2 
(x k − f (x k )) 

)∥∥ ≤ 10 −4 

Table 3 

The results for FBSN, LQP and MBNLS on medium-scale examples 5.1 ∼ 5.4 . 

Prob dim LQP iter/cput/fe/ncpres FBSN iter/cput/fe/ncpres MBNLS iter/cput/fe/ncpres 

5.1 50 2 18.2/0.0274/39.4/2.1e −04 19/3.6238/39/3.4e −04 25.2/ 0.0172 /32.4/4.0e −05 

100 2 19.8/0.1413/42.6/6.3e −04 20.2/60.240/41.4/5.9e −04 25.4/ 0.0778 /36/8.2e −04 

5.2 50 2 10.8/ 0.0152 /24.6/4.0e −06 ∗/ ∗/ ∗/ ∗ 29.4/0.0154/36.8/3.9e −05 

100 2 11/ 0.0590 /25/5.7e −06 ∗/ ∗/ ∗/ ∗ 27.8/0.0650/37.4/2.1e −04 

5.3 5k 14.2/5.5317/30.4/1.5e −05 3/3.9938/7/2.8e −08 21/ 3.0181 /25/3.5e −05 

10k 14.6/22.473/31.2/1.6e −05 3/15.670/7/3.4e −08 22/ 12.554 /26/3.6e −05 

5.4 5k ∗/ ∗/ ∗/ ∗ ∗/ ∗/ ∗/ ∗ 3/ 0.3799 /4/1.6e −08 

10k ∗/ ∗/ ∗/ ∗ ∗/ ∗/ ∗/ ∗ 2/ 1.0247 /3/1.2e −02 

 

 

 

 

 

 

 

We define the residual of nonlinear complementarity problem (ncpres for short) as follows 

ncpres := max 
{‖ min (x k , 0) ‖ , ‖ min ( f (x k ) , 0) ‖ , | x T k f (x k ) | 

}
. (4.1)

The stopping criteria of the MBNLS, LQP and FBSN are set in Table 2 . The corresponding algorithm stops whenever one

of these criterias meets. 

Remark 4.1. By Theorem 2.1 , x solves NCP (1.1) if and only if u = 

1 
2 (x − f (x )) solves the nonsmooth nonlinear equations

F (u ) = 0 . Hence, ‖ F ( u k ) ‖ and 

∥∥F 
(

1 
2 (x k − f (x k )) 

)∥∥ can be adapted as the measurement in stopping criterion. 

In the implementation of all methods, the initial point is set to x 0 = rand(n, 1) . The algorithmic-parameters are set as

follows: 

(1) For FBSN, set β = 0 . 2 , ρ = 0 . 01 , p = 2 . 2 as suggested in [6] ; 

(2) For LQP, set β0 = 1 , η = 0 . 95 , μ = 0 . 01 , γ = 1 . 9 and σ = 1 as suggested in [20] ; 

(3) For MBNLS, we set α0 = 1 , αmax = 10 2 , c = 10 −4 , β = 0 . 618 , θ = 20 , T 0 = 10 3 , γ = 0 . 9 . 

For easy reference, the notations used in the numerical results, i.e., Tables 3 and 4 , are interpreted as follows: 

Prob : test example index; dim : dimension of test example, 1k := 1.0 × 10 3 ; 

iter : total number of iterations; cput : CPU time in seconds; 

fe : total number of function evaluations; ncpres : residual error defined by (4.1) ; 
∗/ ∗/ ∗/ ∗: iter > 10 0 0 0 or cput > 360 0 s or ncpres > 10 −1 ; 

The proposed MBNLS method is compared with FBSN and LQP on the medium-scale test Examples 5.1 –5.4 , and compared

with LQP on large-scale test Examples 5.5 –5.15 . All results are the average over five runs. For fairness, the method who has

the least cpu time (cput in seconds) is selected as the winner and highlighted by red letters. 

From Tables 3 and 4 one can find that, the MBNLS method is selected as the winner in most cases. In the sense, we

conclude that the performance of MBNLS method is superior to the FBSN and LQP method. 
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Table 4 

The results for LQP and MBNLS on large-scale examples 5.5 ∼ 5.15 . 

Prob dim LQP iter/cput/fe/ncpres MBNLS iter/cput/fe/ncpres 

5.5 5k 12/0.0046/25/1.3e −04 40/ 0.0030 /41/1.4e −04 

50k 14/0.0372/29/1.1e −04 81/ 0.0297 /82/3.1e −04 

500k 15/ 0.4938 /31/3.2e −04 170/1.8591/171/6.6e −04 

5.6 5k 12/0.0053/26/2.9e −06 12/ 0.0012 /13/4.5e −06 

50k 13/0.0412/28/1.2e −05 14/ 0.0063 /15/1.4e −05 

500k 14/0.8378/30/1.4e −05 20/ 0.4002 /21/2.1e −05 

5.7 5k 2/0.0010/6/0.0e + 00 4/ 0.0002 /5/0.0e + 00 

50k 2/0.0074/6/0.0e + 00 4/ 0.0017 /5/0.0e + 00 

500k 2/0.0860/6/0.0e + 00 3/ 0.0457 /5/0.0e + 00 

5.8 5k 1/0.0007/4/0.0e + 00 3/ 0.0004 /5/0.0e + 00 

50k 1/0.0056/4/0.0e + 00 3/ 0.0036 /5/0.0e + 00 

500k 1/0.0677/4/0.0e + 00 3/ 0.0606 /5/0.0e + 00 

5.9 5k 16/0.0069/34/5.2e −09 5/ 0.0004 /5/0.0e + 00 

50k 18/0.0575/38/3.1e −09 3/ 0.0023 /5/0.0e + 00 

500k 19/1.0794/40/7.9e −09 3/ 0.0705 /5/0.0e + 00 

5.10 5k 12/0.0042/25/1.3e −04 40/ 0.0028 /41/1.4e −04 

50k 14/0.0331/29/1.1e −04 81/ 0.0269 /82/3.1e −04 

500k 15/ 0.5061 /31/3.2e −04 170/1.8860/171/6.6e −04 

5.11 5k 666.8/0.3102/1429.6/4.6e −08 76.6/ 0.0078 /79.8/2.7e −10 

50k 927/3.4008/2051/4.5e −08 89.4/ 0.0539 /92.4/3.6e −11 

500k 1217.8/88.162/2727.6/4.0e −08 16/ 0.3883 /19/2.4e −09 

5.12 5k 713.6/0.2685/1513.4/8.1e −08 156.2/ 0.0115 /159.2/2.8e −09 

50k 962.2/2.7590/2106.8/8.1e −08 116.2/ 0.0484 /129.2/1.9e −08 

500k 1184.6/52.993/2680/9.0e −08 45/ 0.6651 /52.8/1.4e −08 

5.13 5k 14.6/0.0191/34.2/2.3e −06 19.4/ 0.0074 /26.4/5.6e −05 

50k 16/0.1677/37.8/2.4e −05 21/ 0.0787 /28/3.9e −05 

500k 20.2/2.0118/47.4/1.7e −05 20/ 0.7983 /27/3.9e −05 

5.14 5k 48.6/0.0182/99.2/0.0e + 00 3/ 0.0004 /6/0.0e + 00 

50k 91.2/0.2641/184.4/0.0e + 00 3/ 0.0024 /6/0.0e + 00 

500k 165.6/10.649/333.2/0.0e + 00 3/ 0.1012 /6/0.0e + 00 

5.15 5k 11.2/2.2956/24.4/2.5e −02 7.8/ 0.5415 /8.8/2.1e −04 

50k 11.6/143.00/25.2/3.8e −02 8/ 31.884 /9/2.1e −03 

300k ∗/ ∗/ ∗/ ∗ 8/ 1991.1 /9/1.3e −02 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In this paper, we proposed a modulus-based nonmonotone line search method for nonlinear complementarity problem.

By a modulus-based decomposition, the nonlinear complementarity problem (1.1) is reformulated to a nonlinear nonsmooth

system. We extended a nonmonotone line search method to solve the resulting system, and consequently, it solves the

nonlinear complementarity problem. The global convergence of the proposed method is established under some suitable

assumptions. Numerical results show that, compared with the FBSN and LQP, the proposed MBNLS method outperforms in

most cases. 
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Appendix A. 

Example 5.1 [29] . Let f (x ) = Ax + �(x ) + q, where A = diag (−I, H, −I) ∈ R n ×n , with H = diag (−1 , 4 , −1) ∈ R 
√ 

n ×√ 

n , q =
(−1 , 1 , −1 , 1 , . . . ) T , and �(x ) = vec { �i (x i ) } is a diagonal mapping with endowed component �i (x i ) = x i / (1 + x i ) , i =
1 , 2 , . . . , n . 

Example 5.2 [29] . Let f (x ) = Au + �(x ) + q, where A = diag (−1 . 5 I, H, −0 . 5 I) ∈ R n ×n , with H = diag (−1 . 5 , 4 , −0 . 5) ∈ R 
√ 

n ×√ 

n ,

q = (1 , −1 , 1 , −1 , . . . ) T , and �(x ) = vec { �i (x i ) } is a diagonal mapping with endowed component �i (x i ) = arctan (x i ) , i =
1 , 2 , . . . , n . 

https://doi.org/10.13039/501100001809
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Example 5.3 [40] . The function f ( x ) is given by f (x ) = Ax + g(x ) , where A = diag (−1 , 2 , −1) , g(x ) = vec { e x i − 1 } , i =
1 , 2 , . . . , n . 

Example 5.4 [39] . The function f ( x ) is endowed with the component as follows: 

f 1 (x ) = x 1 − e cos ( 
x 1 + x 2 

n +1 ) , f n (x ) = x n − e 
cos 

(
x n −1 + x n 

n +1 

)
, 

f i (x ) = x i − e 
cos 

(
x i −1 + x i + x i +1 

n +1 

)
, i = 2 , 3 , . . . , n − 1 . 

Example 5.5 [40] . The function f ( x ) is endowed with the component as follows: 

f i (x ) = x i − sin (x i ) , i = 1 , 2 , . . . , n. 

Example 5.6 [39] . The function f ( x ) is endowed with the component as follows: 

f i (x ) = min 

(
min 

(| x i | , x 2 i 

)
, max 

(| x i | , x 3 i 

))
, i = 1 , 2 , . . . , n. 

Example 5.7 [39] . The function f ( x ) is endowed with the component as follows: 

f i (x ) = e x i − 1 , i = 1 , 2 , . . . , n. 

Example 5.8 [39] . The function f ( x ) is endowed with the component as follows: 

f i (x ) = x i −
1 

n 

x 2 i + 

1 

n 

n ∑ 

k =1 

x k + i, i = 1 , 2 , . . . , n. 

Example 5.9 [41] . The function f ( x ) is endowed with the component as follows: 

f 1 (x ) = e x 1 − 1 , 

f i (x ) = e x i + x i −1 − 1 , i = 2 , 3 , . . . , n. 

Example 5.10 [42] . The function f ( x ) is endowed with the component as follows: 

f i (x ) = x i − sin ( | x i | ) , i = 1 , 2 , . . . , n. 

Example 5.11 [43] . The function f ( x ) is endowed with the component as follows: 

f 1 (x ) = e x 1 − 1 , 

f i (x ) = 

i 
10 ( e 

x i + x i −1 − 1 ) , i = 2 , 3 , . . . , n. 

Example 5.12 [43] . The function f ( x ) is endowed with the component as follows: 

f i (x ) = 

i 

10 

( e x i − 1 ) , i = 1 , 2 , . . . , n. 

Example 5.13 [43] . The function f ( x ) is endowed with the component as follows: 

f 1 (x ) = 3 x 3 1 + 2 x 2 − 5 + sin (x 1 − x 2 ) sin (x 1 + x 2 ) , 
f i (x ) = −x i −1 e 

x i −1 −x i + x i (4 + 3 x 2 
i 
) + 2 x i +1 

+ sin (x i − x i +1 ) sin (x i + x i +1 ) − 8 , i = 2 , 3 , . . . , n − 1 , 

f n (x ) = −x n −1 e 
x n −1 −x n + 4 x n − 3 . 

Example 5.14 [43] . The function f ( x ) is endowed with the component as follows: 

f 1 (x ) = (3 − 0 . 5 x 1 ) x 1 − 2 x 2 + 1 , f n (x ) = (3 − 0 . 5 x n ) x n − x n −1 + 1 , 

f i (x ) = (3 − 0 . 5 x i ) x i − x i −1 − 2 x i +1 + 1 , i = 2 , 3 , . . . , n − 1 . 

Example 5.15 [43] . The function f ( x ) is endowed with the component as follows: 

f i (x ) = x i −
( 

1 − c 

2 n 

n ∑ 

j=1 

μi x j 

μi + μ j 

) −1 

, 

with c ∈ [0, 1) and μi = n −1 (i − 0 . 5) , for i = 1 , 2 , . . . , n . (we set c = 0 . 9 as suggested in [43] ). 
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