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Abstract Robust analysis is important for designing and analyzing algorithms for global
optimization. In this paper, we introduce a new concept, robust constant, to quantitatively
characterize the robustness of measurable sets and functions. The new concept is consistent
to the theoretical robustness presented in literatures. This paper shows that, from the respects
of convergence theory and numerical computational cost, robust constant is valuable signif-
icantly for analyzing random global search methods for unconstrained global optimization.
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1 Introduction

In this paper, we consider the unconstrained global minimization problem of the form:

c∗ = min
x∈Rn

f (x) (1.1)
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where f : Rn → R is a summable continuous function but not necessarily convex. Assume
that the function f is lower-bounded and the level set

{
x ∈ Rn : f (x) < f (x0)

}
is bounded

for any x0 ∈ Rn .
Generally, we need a certain smoothness assumption on the objective function f such that

some gradient-based optimization methods, e.g., the steepest descent method or the Newton-
type methods, can be used to find a local minimizer. Unless problem (1.1) has some special
structures, e.g., convex programming or fractional linear programming, finding a global
minimizer is an NP-hard problem, see Vavasis [27]. However, finding a global minimizer
of a general non-convex function is a common task in the real-world applications. Thus,
various global minimization techniques have been developed, interested readers are referred
to [8,12,24,26] for excellent survey papers.

Among the developed methods, global search is frequently used in engineering applica-
tions. At each iteration, global search seeks a candidate solution from the feasible set of the
problem to be solved, while local search finds a next candidate in the neighborhood of the
current solution. Pure random search (PRS) and pure adaptive search (PAS) are two classical
global search methods with random sampling techniques.

The PRS method was originally proposed by Brooks [4]. Let H0 = {x ∈ Rn : f (x) <

f (x0)}, where x0 ∈ dom f is an initial solution. If f (x0) > c∗, then H0 is nonempty. At the
k-th iteration, PRS produces a candidate xk such that

f (xk) = min
{
f (xi ), i = 1, 2, . . . , N , xi i.i.d. on H0

}
. (1.2)

The PRS method is extremely robust, easy to implement but the convergence is very slow.
Several stochastic methods have been developed as variations of PRS. Appel, Labarre and
Radulovic [1] designed a simple accelerated random search (ARS) algorithm. Kabirian [10]
proposed an algorithm that merges Ranking and Selection procedures with a large class of
random search methods for continuous simulation optimization problems. Radulovic [19]
proposed a pure accelerated random search (PARS), and proved that it converges for all
measurable functions with the essential supremum, and for a very large subclass of functions
the convergence rate is exponential. Price, Reale and Robertson [18] presented a variation
of ARS called one side cut ARS method, which is a direct search method for bounded
constrained global optimization. The other interesting random search methods, combining
with partition, clustering, multi-level and multi-start, etc., have been presented by many
authors. The readers are referred to [16,17,20,21,25] and the references therein.

The PAS method, originally studied by Zabinsky et al. [13,30], constructs a sequence of
interior points uniformly distributed within the corresponding sequence of nested improving
regions of the feasible space. For a given xk , let Hk = {x ∈ Rn : f (x) < f (xk)} be the level
set of the k-th iteration. The PAS method randomly generates xk+1 uniformly distributed in
Hk . By this mechanism it always has f (xk+1) < f (xk), and consequently Hk+1 ⊂ Hk . It has
been shown in [30] that, if f (x) is Lipschitz then the convergence rate of the PAS method
is exponential. Radulovic [19] claimed that the PAS method is “theoretical optimum” in
the setting of pure, non-gradient based, stochastic optimization schemes. However, the PAS
method is impossible to implement in general, since identifying the current level set Hk is
intrinsically harder than actually finding an optimal solution. Zabinsky et al. [31] defined
strong and weak variations of PAS in the setting of finite global optimization, and proved
their linear (in dimension) complexity. Combining with the ideas of simulated annealing,
Bulger and Wood [5] presented a unified theory which yields both the finite and continuous
results for PAS. This method is allowed to “ hesitate” before improvement continues, hence it
is termed hesitant adaptive search. Baritompa et al. [2] introduced an algorithm termed pure
localisation search which attempts to reach the practical ideal. This method is a relaxation
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of PAS, and is more likely to be efficiently implementable, yet still possesses the desirable
complexity of PAS. Bulger, Baritompa andWood [6] proposed an implementationwhich uses
the Grover quantum computational search algorithm to generate the PAS iterates, called the
Grover adaptive search, to realize PAS for functions satisfying certain conditions. The cross-
entropy (CE) method proposed by Rubinstein et al. [3,11,22,23] and the model reference
adaptive search method proposed by Hu et al. [9] can be also looked as variations of PAS.
They are random global search methods using importance sampling.

The integral level-set method (ILSM), originally proposed by Zheng [7,33], is a deter-
ministic global search method. It constructs two sequences in the ILSM: a sequence of the
level value {ck} and a sequence of the corresponding level set {Hck }, which are

ck+1 = 1

μ(Hck )

∫

Hck

f (x)dμ, (1.3)

Hck+1 = {
x ∈ Rn : f (x) < ck+1

}
, (1.4)

where μ is the Lebesgue measure on Rn . Under the assumptions that f (x) is lower semi-
continuous and robust,1 and the level-set H0 is measurable for all c0 = f (x0), Zheng [32]
proved that the level-value sequence {ck} converges to the optimal value, and respectively, the
level-set sequence {Hck } converges to the optimal solution set. The ILSM has the same dif-
ficulty as that of PAS, i.e., the level set Hck is hard to be determined. So, the implementable
algorithm of ILSM calculates integration in (1.3) and determines level set in (1.4) by the
Monte-Carlo method. To do so, it leads to a drawback that convergence of the implementable
algorithm cannot be guaranteed. To improve the ILSM, Yao et al. [29] presented an opti-
mality condition and an algorithm with deviation integral for global optimization. Wu et al.
[28] presented a sufficient and necessary condition for computing the essential infimum. To
overcome the drawback of identifying the current level set Hck , Peng et al. [14] proposed
a level-value estimation method (LVEM) based on the idea of ILSM, and implemented the
LVEM by the Monte-Carlo method using importance sampling, and proved convergence of
the implementable algorithm. The LVEM bridged the gap between the conceptual algorithm
and implementation of the ILSM. Peng, Shen and Wu [15] proposed a modified integral
level-set method (MILSM) based on importance sampling. Let

Fk(x) =
{
ck, if f (x) ≥ ck,
f (x), otherwise,

(1.5)

the MILSM updates the level value by

ck+1 = 1

N

N∑

t=1

Fk(Xt ) (1.6)

where Xt is independently identically distributed (i.i.d. for short) from distribution with
the density gk(x) on Rn . The efficiency of the MILSM depends on sample distribution
characterized by the density gk(x). The cross-entropy method provides a novel idea for
choosing and updating rule of sampling density function.

Given a sample x ∈ Rn , we say it is an effectual sample with respect to the set H if
and only if x ∈ H . Numerous computational experiments showed that, the ratio of effectual
sample depends on not only the density g(x) but also the set H . To characterize the property
of a set related to the ratio of effectual sample, Zheng [32] introduced robust analysis for
global optimization. Specifically, he presented some related concepts of robust set and robust

1 The robustness of a function defined by Zheng [32] will be introduced in the next section.
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Fig. 1 The relaxation of level set and density function

function for qualitative description of the robustness. To quantitatively analyze the robustness
of robust set and robust function, we introduce a new important concept, i.e., robust con-
stant, in this paper. We will show that, robust constant is valuable significantly for analyzing
convergence and efficiency of random global search techniques for global optimization.

The rest of this paper is organized as follows. Section 2 gives the concept of robust
constant. Section 3 proposes a modified PAS method for global optimization, and analyzes
its convergence by using robust constant. Utilizing the global robust constant, we give a
simple and checkable stopping criterion for the proposedmethod. Section 4 presents a simple
numerical experiment which shows that, the robust constant is an important parameter for
global optimizationwhen themodified PASmethod (a representative of randomglobal search
technique) is used. Finally, Sect. 5 gives some concluding remarks.

2 Robust constant

A sample density function g(x) is said to be “good” with respect to (w.r.t. for short) the set
H if

∫

clcoH
g(x)dμ ≥ p > 0, (2.1)

where clcoH is the closed convex hull of H .
Assume the density function gk(x) is “good” w.r.t. the level set Hck at the k-th iteration.

Then, �ck = ck − ck+1, decrement of the level values generated by (1.5)–(1.6), depends
obviously on the effectual sample set determined by Hk = {Xi : F(Xi ) = f (Xi ), i =
1, 2, . . . , N }. For example, suppose the objective function f (x) and the density function
g(x) are displayed in Fig. 1. The level set with c = 0.2 is

Hc = {x : f (x) < c} = (1, 2) ∪ (3, 3.5).

It is obvious that clcoHc = [1, 3.5]. Let ρ =
∫ 3.5

1
g(x)dx , then the ratio of effectual sample

is

α = ρ × (2 − 1) + (3.5 − 3)

(3.5 − 1)
= ρ × μ((1, 2) ∪ (3, 3.5))

μ([1, 3.5]) = ρ × μ(Hc)

μ(clcoHc)
. (2.2)
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It is worth to notice that, the ratio of effectual sample depends on
μ(Hc)

μ(clcoHc)
, which is a

constant associated to the level set Hc.
This constant is related to an important property of Hc. To study this property, Zheng [32]

gave some concepts of theoretical robustness. Let X be a topological space and D be a subset
of X . By [32], we have

Definition 2.1 [32] A set D is robust if and only if

clD = cl(int D), (2.3)

where cl denotes the closure of a set. Obviously, by Definition 2.1 the empty-set ∅ is robust.

Definition 2.2 [32] A function f : X → R is robust if and only if its level set Hc = {x ∈
X : f (x) < c} is robust for all c ∈ (−∞,+∞), where X is a robust set.

Definition 2.3 [32] Let X be a normal topological space, � be a σ -field of subsets of X . A
measure space (X,�,μ) is said to be a Q-measure space if the following conditions hold:

M1. each open set is in �;
M2. the measure of each nonempty open set is positive;
M3. the measure of each compact set is bounded.

Let (X,�,μ) be a Q-measure space. For a given measurable set S ⊂ X , let clcoS be the
closed convex hull of S. We give the definition of robust constant as follows:

Definition 2.4 Let S be a robust set. The robust constant of S is given by

R(S) = μ(S)

μ(clcoS)
. (2.4)

Particularly, set R(∅) = 1 and R({x}) = 1, where {x} ⊂ X is a singleton.

Definition 2.5 Let f : X → R be a robust function where X is robust. The robust constant
of f w.r.t. the level value c is given by

R( f, c) = μ(Hc)

μ(clcoHc)
, (2.5)

where Hc = {x ∈ X : f (x) < c}. By Definition 2.5, it is obvious that R( f, c) = R(Hc).

In what follows, we present some examples for well-understanding of the new concepts.

Example 2.1 Let X ∈ Rn be a closed convex set, then clcoX = X , which implies that the
robust constant of X is R(X) = 1.

Example 2.2 Let f : Rn → R be a strictly convex and lower-bounded function. Then, for
any c ∈ R, Hc = {x ∈ Rn : f (x) < c} is a convex set, which results inμ(Hc) = μ(clcoHc).
Thus, we have R( f, c) = 1.

Example 2.3 Let X = [0, 1], and f : X → R be defined by

f (x) =
{
1, if x is an irrational number,
0, if x is a rational number.

Then we have

R( f, c) =
{
1, if c ≥ 1,
0, otherwise.
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Fig. 2 The function f : [0, 4] → R

Example 2.4 Let X = [0, 4π ], and f : X → R be defined by

f (x) =
{
sin x, x ∈ [0, 2π),
1

π
x − 2, x ∈ [2π, 4π].

Then, by a simple computation we have: R( f, c) = 1 for all c ≥ 1 or c < 0, and R( f,
1

2
) =

11

15
, and so on.

The robust constant of a function depends on the Lebesgue measure of its level set.
The level set is difficult to identify, thus robust constant is hard to compute in general.
However, it has significance in theory for global optimization, just like Lipschitz constant
for convex analysis. Lipschitz constant is also hard to compute, but this does not obstruct the
wide applications. This paper does not aim to overcome the drawback of computing robust
constant. Alternatively, we focus on the new concept aiming to give a quantitative measure
of robustness, and discuss the theoretical significance and applicability.

For global optimization, we are also interested in global robust constant.

Definition 2.6 A function f : Rn → R is global robust with global robust constant r > 0
if

R( f, c) ≥ r, ∀c ∈ (−∞,+∞). (2.6)

Example 2.5 Suppose the function f : [0, 4] → R is displayed in Fig. 2. It is obvious that

R( f, c) ≥ lim
ε→0+ R( f, 2 + ε) = 1

3
, ∀c ∈ (−∞,∞).

Thus, the global robust constant of the function f is r = 1

3
.

Indeed, the definition of robust constant is consistent to the concept of theoretical robust-
ness presented in literatures. The consistency is shown in the following.

Theorem 2.1 If f : X → R is a robust function where X is a robust set, then R( f, c) > 0
for all c ∈ (−∞,+∞).
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Proof By Definition 2.2, the function f : X → R is robust which implies that Hc = {x ∈
X : f (x) < c} is robust for all c ∈ (−∞,+∞). Thus, by Definition 2.1, we have

cl(Hc) = cl(intHc). (2.7)

If Hc = ∅, then R( f, c) = R(Hc) = R(∅) = 1 > 0. Otherwise Hc �= ∅, by (2.7) we have

cl(intHc) = cl(Hc) �= ∅,

which means that intHc �= ∅, and consequentially by Definition 2.3, μ(intHc) > 0. Thus
μ(Hc) ≥ μ(intHc) > 0 which deduces R( f, c) > 0.

By Theorem 2.1, the global robust constant r > 0 is a necessary condition for that the
corresponding function is robust. The Dirichlet function is not robust thus its global robust
constant is zero, see Example 2.3.

3 Applications in analyzing random global search

Robust constant is a useful concept for analyzing random global search technique for global
optimization. In this section, we first propose a modified pure adaptive search method which
is a representative of random global search methods, then we analyze convergence of the
proposed method by using robust constant.

For problem (1.1), it is well-known that: if Hc = ∅, then c < c∗ = min f (x). Suppose
f (x) is robust on Rn , and the scheme (1.5)–(1.6) is used to find the minimal value of f ,
where Xt (t = 1, 2, . . . , N ) in (1.6) are i.i.d. random samples with density function g(x)
(determined by mean u and variance σ 2). Then, the ratio of effectual sample with respect to
Hc is given by

ρ = R( f, c) ×
∫

clcoHc

g(x)dμ. (3.1)

The expected number of effectual samples is Nelite = ρN .
Basing on this observation, we propose a modified pure adaptive search method for the

problem (1.1), and analyze the proposed method by using robust constant. Via this analysis,
one may realize the significance of robust constant.

Algorithm 3.1 A modified pure adaptive search method, MPAS

s0. Let X0 be a random sample in Rn , c0 = f (X0), and let g0(x) be the probability density
function with mean vector u0 and variance vector σ 2

0 . Let ε > 0. Set k = 0.
s1. Generate a sample set Sk = {Xt , t = 1, 2, . . . , Nk} i.i.d. from the distribution with

density gk(x). Let

ck+1 = 1

Nk

Nk∑

t=1

Fk(Xt ), (3.2)

where Fk(x) is defined by (1.5). Let Ĥk = {Xt : F(Xt ) = f (Xt ) < ck, t =
1, 2, . . . , Nk} be the effectual sample set, and nk = |Ĥk | be the number of elements
in the set.

s2. If |ck+1 − ck | < ε, then stop. Otherwise, go to s3.
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s3. Let

uk+1 = 1

nk

∑

Xt∈Ĥk

Xt , and σ 2
k+1,i = 1

nk

∑

Xt∈Ĥk

(
Xt,i − uk+1,i

)2
, i = 1, 2, . . . , n.

(3.3)

Smooth these parameters by the following scheme

uk+1 = αuk+1 + (1 − α)uk, σk+1,i = βkσk+1,i + (1 − βk)σk,i , i = 1, 2, . . . , n,

(3.4)

where 0.5 < α < 0.9, 0.8 < β < 0.99 and βk = β − β(1 − 1
k )

q , q is an integer
(typically between 5 and 10), see Rubinstein et al. [22] and [11].
Construct the new density function gk+1(x) with mean vector uk+1 and variance σ 2

k+1,
and let k := k + 1, go to s1.

Remark 3.1 The step s1 accepts the new level value ck+1 if it satisfies

ck+1 − ck ≤ λk(ck − ck−1), (3.5)

where λk ∈ (0, 1) is the step length of the k-th iteration.

Remark 3.2 In engineering applications, one can update the sample-size Nk by the following
style: at the k-th iteration, generate Nk samples from the distribution with density gk(x).
Denote the sample set by Sk = {Xt , t = 1, . . . , Nk}, and compute ck+1 by (3.2). If the
criterion (3.5) is satisfied, then accept ck+1 as the new level value. Otherwise, generate 
 Nk

10 �
samples S′

k = {X j , j = Nk + 1, . . . , N
k+
 Nk

10 �} and let Sk := Sk ∪ S′
k . Let Nk = Nk + 
 Nk

10 �,
re-compute ck+1 by (3.2) until the condition (3.5) is satisfied.

At the next iteration, we first reserve the effectual samples w.r.t. ck+1 in Sk , and denote
it by Sresk = {Xt ∈ Hck+1 : Xt ∈ Sk}. Then generate Nk+1 samples from the distribution
with density gk+1(x), denote the sample set by S̃k+1. Let Sk+1 = S̃k+1 ∪ Sresk and Nk+1 :=
Nk+1 + |Sresk |. The rest is to compute ck+2 and check whether it satisfies the criterion (3.5)
or not, and so on.

To prove convergence of the MPAS method, we have the following theorems.

Theorem 3.1 Suppose f : Rn → R is robust with global robust constant r > 0, and the
sample density functions gk(x) is “good” w.r.t. Hck . Then, there exists a positive constant
λB such that the step length λk ≥ λB for all k of the MPAS method.

Proof At the k-th iteration, we have the sample set Sk . We partition Sk into two parts: one is

S1k =
{
Xt ∈ Sk : Fk(Xt ) > ck − η(ck−1 − ck)

}
, and the other is S2k =

{
Xt ∈ Sk : Fk(Xt ) ≤

ck − η(ck−1 − ck)
}
, where η ∈ (0, 1) is a constant. Let N 1

k = |S1k | and N 2
k = |S2k |, then

Nk = N 1
k + N 2

k . By Fk(x) ≤ ck , we have

ck+1 = 1

Nk

∑

Xt∈Sk
Fk(Xt )

= N 1
k

Nk

⎛

⎜
⎝

1

N 1
k

∑

Xt∈S1k
Fk(Xt )

⎞

⎟
⎠ + N 2

k

Nk

⎛

⎜
⎝

1

N 2
k

∑

Xt∈S2k
Fk(Xt )

⎞

⎟
⎠
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≤ N 1
k

Nk
ck + N 2

k

Nk

(
ck − η(ck−1 − ck)

)

= ck − η
N 2
k

Nk
(ck−1 − ck).

Let λk = η
N 2
k

Nk
, we have

ck+1 ≤ ck − λk(ck−1 − ck). (3.6)

On the other hand, let ĉk = ck − η(ck−1 − ck), then by (3.1) we have N 2
k = ρk Nk , where

ρk = R( f, ĉk) ×
∫

clcoHĉk

gk(x)dμ.

Thus, we obtain

λk = ηρk = η × R( f, ĉk) ×
∫

clcoHĉk

gk(x)dμ. (3.7)

Note f : Rn → R is robust with global robust constant r > 0, i.e., R( f, ĉk) ≥ r for all k.
The sample density function gk(x) is “good” w.r.t. Hck , and c∗ < ĉk < ck which implies
clcoHck ⊃ clcoHĉk ⊃ Hĉk �= ∅. Thus, there is 0 < p̂ < p such that

∫

clcoHĉk

gk(x)dμ ≥ p̂, (3.8)

which deduces

λk ≥ ηr p̂ := λB > 0. (3.9)

Theorem 3.2 Suppose f : Rn → R and gk(x) satisfy the assumptions of Theorem 3.1.
Then, for the sequence {ck} generated by the MPAS method, we have

lim
k→∞

(
ck−1 − ck

) = 0. (3.10)

Proof By (1.5) and (3.2), it is easy to show that ck−1 − ck ≥ 0 for all k. Adding (3.6) from
k = 1 to ∞, and let c∞ := lim

k→∞ ck , we get

c∞ ≤ c1 −
∞∑

k=1

λk(ck−1 − ck). (3.11)

The objective function f is lower bounded implies that there exists a real b such that f (x) ≥ b
for all x ∈ Rn , thus we have c∞ ≥ b. Combining (3.9) with (3.11), there exists λB > 0 such
that

λB

∞∑

k=1

(ck−1 − ck) ≤
∞∑

k=1

λk(ck−1 − ck) ≤ c1 − c∞ ≤ c1 − b < +∞, (3.12)

which deduces (3.10) directly.
Intuitively, by S3 of the MPAS method, we have uk+1 ∈ clcoHck and ‖σk+1‖ ≤

diam(clcoHck ), where diam(clcoHck ) = maxx,y∈clcoHck
‖x− y‖ is the diameter of clcoHck .

Thus, the density function gk(x) used in all iterations of the MPAS method is “good” w.r.t.
Hck . However, to prove this assertion is very hard and beyond the interest of this paper, so it
is left as an open problem.
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Theorem 3.3 Suppose the objective function f (x) is robust with global robust constant
r > 0, and the sample density function gk(x) is “good” w.r.t. Hck for all k > 0. Then, the
sequence {ck} generated by the MPAS method converges with probability 1 to global minimal
value of problem (1.1).

Proof The objective function f (x) is lower-bounded on Rn . By (3.2) at S1 of the MPAS
method, the sequence {ck} monotonously decreases and ck ≥ c∗(= minx∈Rn f (x)) for all
k > 0. Hence it converges.

The rest is to prove lim
k→∞ ck = c∗. By contradiction, assume without loss of generality

that

lim
k→∞ ck = c̄, and c̄ > c∗.

Then, for arbitrarily given ε > 0, there is a positive integer K , such that |ck − c̄| < ε holds
for all k > K , which implies that

c̄ + ε > ck > c̄ − ε.

Let ε = 1
2 (c̄ − c∗) > 0, we get ck > 1

2 (c̄ + c∗) > c∗.
On the other hand, since ck > c∗, we have intHck �= ∅, and μ(Hck ) = μ(intHck ) > 0 by

robustness of f (x). Let c̃ = 1
4 (c̄+3c∗), then c∗ < c̃ < ck implies Hc̃ ⊂ Hck and intHc̃ �= ∅.

Thus

clcoHc̃ ⊂ clcoHck , μ(clcoHc̃) ≥ μ(Hc̃) = μ(intHc̃) > 0. (3.13)

At the k-th iteration, a “good” density function gk(x) (w.r.t. Hck ) is used in sampling. By
(3.13) and the same discussion in Theorem 3.1, we have

∫

clcoHc̃

gk(x)dμ ≥ p̃ > 0.

The ratio of effectual sample with respect to c̃ is

ρ̃ = R( f, c̃) ×
∫

clcoHc̃

gk(x)dμ ≥ r p̃,

where r > 0 is the global robust constant of f by the assumption, i.e., R( f, c̃) ≥ r .
We also have, at the k-th iteration, a sample set Sk = {Xt : t = 1, 2, . . . , Nk}. Partition Sk

to two parts: S1k = {Xt ∈ Sk : F(Xt ) ≥ c̃} and S2k = {Xt ∈ Sk : F(Xt ) < c̃}. It is obvious
that S2k ⊂ Hc̃. Among the Nk samples, with probability 1 there exist ρ̃Nk samples in S2k . By
(3.2), we get

ck+1 = 1

Nk

∑

Xt∈Sk
F(Xt ) = 1

Nk

⎛

⎜
⎝

∑

Xt∈H1
k

F(Xt ) +
∑

Xt∈H2
k

F(Xt )

⎞

⎟
⎠

= (1 − ρ̃)Nk

Nk

⎛

⎜
⎝

1

(1 − ρ̃)Nk

∑

Xt∈H1
k

F(Xt )

⎞

⎟
⎠ + ρ̃Nk

Nk

⎛

⎜
⎝

1

ρ̃Nk

∑

Xt∈H2
k

F(Xt )

⎞

⎟
⎠

≤ (1 − ρ̃)ck + ρ̃c̃.
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By the setting, ck > 1
2 (c̄ + c∗) and c̃ = 1

4 (c̄ + 3c∗), we have

ck − ck+1 ≥ (ρ̃ − 1)ck − ρ̃c̃ + ck = ρ̃(ck − c̃) ≥ ρ̃

[
1

2
(c̄ + c∗) − 1

4
(c̄ + 3c∗)

]

= 1

4
ρ̃(c̄ − c∗) ≥ 1

4
r p̃(c̄ − c∗),

which yields a contradiction with the stopping criterion |ck −ck+1| < ε for arbitrarily ε > 0.
In summary, we have lim

k→∞ ck = c∗ and complete the proof.

Theorem3.2 gives a simple and utilizable stopping criterion for theMPASmethod. Indeed,
under the assumption that the optimized function is robust with global robust constant r > 0,
|ck+1 − ck | = 0 provides a necessary condition for global optimality.

4 Numerical results

The computational cost of a random global search method depends heavily on the robust
constant of a function to be optimized. To illustrate this, we perform the MPAS method
to minimize a set of simple test functions with given global robust constants. We observe
the computational effort, measured by the number of function evaluations, while the MPAS
method is used to minimize the objective function with different global robust constants. The
test functions are given by the following function series: Let x ∈ [−3, 3], f0(x) = |x |,

⎧
⎪⎪⎨

⎪⎪⎩

f1(x) = min
{
0.8 × f0(x + 2) + 0.2, f0(x), 0.8 × f0(x − 2) + 0.2

}
,

f2(x) = min
{
0.8 × f1(3(x + 2)) + 0.2, f1(3x), 0.8 × f1(3(x − 2)) + 0.2

}
,

. . . . . .

fk+1 = min
{
0.8 × fk(3(x + 2)) + 0.2, fk(3x), 0.8 × fk(3(x − 2)) + 0.2

}
.

(4.1)

All the functions achieve globalminimal value c∗ = 0 at the unique globalminimizer x∗ = 0.
Denote the global robust constant of fk(x) by rk where k = 0, 1, 2, · · · . It is easy to show

that r0 = 1, and

r1 = lim
ε→0+ R( f1, 0.2 + ε) = 1

10
, . . . , rk+1 = lim

ε→0+ R( fk+1, 0.2 + ε) = 1

3
rk .

Thus, rk+1 = 1

3k
· 1

10
, and lim

k→∞ rk = 0. We list pictures of some selected test functions in

Fig. 3.
In the numerical experiments, we focus on the relationship between computational cost

(the number of function evaluations) and the global robust constant of the function to be
minimized. In all tests, the MPAS method runs with the same settings: The sample density
function is set toN (uk, σ 2

k ), the density of normal distribution, in which mean value uk and
variance σ 2

k are adaptively updated by S3 of theMPASmethod. The initial sample size is fixed
to Nk = 100 for all instances. The other parameters are list in the following: ε = 1.0×10−7,
α = 0.85, β = 0.90, q = 6.We start theMPASmethod from uniformly distributed sampling
on [−3, 3], then we get the initial mean value u0 and variance σ 2

0 from these samples. The
MPASmethod runs 20 times on each instance.We list the averagedminimal solution (denoted
by x∗) and the averaged number of function evaluations (denoted by N f ) in Table 1.

More clearly, the relationship between computational cost and global robust constant is
displayed in Fig. 4.

By a simple linear regression, we have

log N f = −0.4508 log r + 3.2218.
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Fig. 3 Pictures of selected test functions, (a) Picture of f1(x), (b) Picture of f2(x), (c) Picture of f3(x),
(d) Picture of f8(x), (e) Picture of f9(x), (f) Picture of f10(x)

Table 1 Computational cost and global robust constant

Prob. id. f0 f1 f2 f3 f4 f5

rk 1 1
10

1
3 × 1

10
1
32

× 1
10

1
33

× 1
10

1
34

× 1
10

x∗ 3.8254e−7 −6.2651e−8 2.1930e−8 −4.8603e−9 −5.0626e−8 −4.5715e−8

N f 2228 3678 10065 13120 16530 20870

Prob. id. f6 f7 f8 f9 f10

rk
1
35

× 1
10

1
36

× 1
10

1
37

× 1
10

1
38

× 1
10

1
39

× 1
10

x∗ 1.7409e−9 1.8006e−9 2.4229e−9 −2.3364e−9 −7.9819e−9

N f 58190 100100 148275 267240 490250
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g 

N
f

log r

log Nf vs log r

Fig. 4 The relationship between the computational cost and the global robust constant
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5 Conclusions

In engineering optimization, random global search techniques are the most useful method for
finding a global optimizer. However, many random global search methods have not a suitable
stopping criterion. In this paper, we have proposed a new important concept, i.e., robust
constant, to quantitatively describe the robustness of measurable sets and functions. We have
shown that, global robust constant r > 0 is a necessary condition for that the corresponding
function (defined on a robust set) is robust. The robust constant is a very useful concept for
analyzing random global search methods for unconstrained global optimization.

To show applicability of the robust constant, we have proposed a modified pure adaptive
(MPAS) method for unconstrained global optimization, and have analyzed the proposed
method (by using global robust constant) from two sides: convergence theory and numerical
experiment.

On convergence theory, under the assumption that the objective function is robust with
global robust constant r > 0, we have proved the decrement of the level value, |ck − ck+1|,
converges to zero. This provides a necessary condition for global optimality if the MPAS
method is used. Basing on the assertion, we have proved convergence of the MPAS method.
Meanwhile, we have given a suitable and checkable criterion to stop the MPAS method.

On numerical experiment, we have constructed a series of test functions with given global
robust constants, and minimized these functions by the MPAS method. Numerical result
shows that, the computational cost depends heavily on the global robust constant of the min-
imized function. This observation implies that, when the MPAS method (as a representative
of the random global search technique) is used, robust constant is an important parameter of
the objective function in unconstrained global optimization.

The MPAS method proposed in this paper can be improved and enhanced via various
ways. However, the enhancement and improvement is beyond the main goal of this paper,
and we leave it as a task for future research.
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