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We develop a manifold inexact augmented Lagrangian framework to solve a family of nonsmooth
optimization problem on Riemannian submanifold embedding in Euclidean space, whose objective
function is the sum of a smooth function (but possibly nonconvex) and a nonsmooth convex func-
tion in Euclidean space. By utilizing the Moreau envelope, we get a smoothing Riemannian mini-
mization subproblem at each iteration of the proposed method. Consequentially, each iteration sub-
problem is solved by a Riemannian Barzilai—-Borwein gradient method. Theoretically, the conver-
gence to critical point of the proposed method is established under some mild assumptions. Numer-
ical experiments on compressed modes problems in physic and sparse principal component analysis
demonstrate that the proposed method is a competitive method compared with some state-of-the-art
methods.

Keywords: nonsmooth optimization; Riemannian manifold constraint; augmented Lagrangian method;
Moreau envelope.

1. Introduction

Riemannian optimization is concerned with optimizing a real-value function over a nonlinear constraint
endowed with a manifold structure .# . The area has recently aroused considerable research interests
due to the wide applications in different fields, such as computer vision, signal processing, etc. (Absil
et al., 2009). In these applications, manifold .# could be Stiefel manifold, Grassmann manifold or
symmetric positive definite manifold and so on. Many classical optimization methods in Euclidean
space have been extended to Riemannian optimization problem, e.g., gradient-type methods (Absil ez
al., 2009; Zhang & Sra, 2016; Boumal et al., 2018), Newton-type methods (Ferreira & Silva, 2012;
Huang et al., 2015b; Yuan et al., 2017; Bortoloti et al., 2020) and trust region methods (Absil er al.,
2007; Baker et al., 2008; Boumal, 2015; Huang et al., 2015a). However, most of the existing works
focus on the case when objective function is smooth, nonsmooth Riemannian optimization problem
is less explored, but has drawn increasing attention in recent years; see Absil & Hosseini (2019) for
an example.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

€20z Jaquiejdes g uo Jesn Ateiqr] ABojouyos | ® 9ousIog [euoneN Aq 8EZ0659/SS9L/S/Sy/olonie/eulewil/woo dno olwapeae//:sdiy Wol) papeojumoc]


https://doi.org/10.1093/imanum/drac018

1654 K. DENG AND Z. PENG

In this paper, we consider a nonconvex nonsmooth Riemannian optimization problem as follows:

min F(X) := f(X) + g(AX)
XeR (1.1)
s.t. XeM,

where ./ is a Riemannian submanifold embedding in a Euclidean space E, f : .# — R is a smooth
but possibly nonconvex function and g : R”™ — R is convex but nonsmooth in usual Euclidean space,
o/ : E — R™ is a linear operator. We assume throughout this paper that, the proximal mapping of g can
be cheaply evaluated.

Many convex or nonconvex problems in real-world applications have the form of problem (1.1),
e.g., sparse principal component analysis (SPCA) (Zou et al., 2006), compressed modes (CMs) problem
(Ozolins et al., 2013), robust low-rank matrix completion (Cambier & Absil, 2016) and multi-antenna
channel communications (Zheng & Tse, 2002; Gohary & Davidson, 2009), etc. Absil & Hosseini (2019)
presented many examples of manifold optimization with nonsmooth objective.

In this paper, we will propose a manifold inexact augmented Lagrangian method (MIALM) for
solving problem (1.1). We first reformulate problem (1.1) to a separable form and then develop a
manifold inexact augmented Lagrangian framework to the resulting separable optimization problem.
By utilizing the Moreau envelope technique, the iteration subproblem owning the main computational
cost in the proposed method is formulated to a smooth optimization problem on Riemannian manifold,
and then a Riemannian gradient method is applied on the smooth subproblem. Our main contributions
in this paper are summarized as follows.

(1) By utilizing the Moreau envelope technique, we reformulate the nonsmooth iteration subproblem
in the proposed method to a smooth one, and consequentially, it can be solved by some classical
Riemannian optimization methods, such as Riemannian gradient/Newton/quasi-Newton method.

(2) The convergence to critical point of the proposed manifold inexact augmented Lagrangian
framework is established under some mild assumptions.

(3) Numerical experiments on CMs and SPCA problems show that the proposed MIALM is
competitive compared with some existing methods.

Notations: Let .# be a Riemannian submanifold embedded in a Euclidean space E, J,(.#) denotes
the set of all real-valued functions f defined in a neighborhood of x in .# . Given a real-valued function
f and a point x € .#, we use Vf(x) (V2f(x)) and gradf(x) (Hessf(x)) to denote the Euclidean and
Riemannian gradient (Hessian) of f, respectively. The Euclidean and Riemannian Clarke subdifferential
of f at x € .4 are denoted by 9f(x) and dgf(x). As usual, f* is the Fenchel conjugate of an arbitrary
function f. We use || - [I1, || - I, | - |, denote the £, £,, £, norm in the usual sense. Other notations will
be defined when they occur.

Organization: The rest of this paper is organized as follows. Some related works on nonsmooth
manifold optimization problem are summarized in Section 2, and some preliminaries on manifold
optimization are given in Section 3. In Section 4, an MIALM is proposed and the iteration subproblem
solver is also presented. The convergence to critical point of the proposed manifold inexact augmented
Lagrangian framework is established in Section 5. Numerical results on CMs problems in physics and
SPCA are reported in Section 6. Finally, Section 7 concludes this paper with some remarks.
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2. Related works
2.1  Some existing methods for nonsmooth manifold optimization problem

The existing methods for nonsmooth manifold optimization problem are mainly focused on three
categories as follows: subgradient-oriented methods, proximal point methods and operator-splitting
methods.

The subgradient-oriented methods require subgradient information for finding the search direction.
Grohs & Hosseini (2016) proposed the e-subgradient algorithm for minimizing a locally Lipschitz func-
tion on Riemannian manifold. By utilizing e-subgradient-oriented descent direction and the generalized
Wolfe line-search on Riemannian manifold, Hosseini ef al. (2018) presented a nonsmooth Riemannian
line-search algorithm and established the convergence to a stationary point. Grohs & Hosseini (2015)
presented a nonsmooth trust-region algorithm for minimizing locally Lipschitz objective function on
Riemannian manifold. The iteration complexity of these subgradient algorithms was also investigated
by Bento et al. (2017) and Ferreira et al. (2019). Hosseini & Uschmajew (2017) and Burke ez al. (2020)
proposed the Riemannian gradient sampling algorithms. At each iteration of these Riemannian gradient
sampling methods, the subdifferential of the objective function is approximated by the convex hull of
transported gradients of nearby points, and the nearby points are randomly generated in the tangent
space of the current iterate.

Proximal point algorithms on Riemannian manifold has attracted much research attention in the
past few years. Bento et al. (2017) analyzed the iteration complexity of a proximal point algorithm
on Hadamard manifold with nonpositive sectional curvature. Without assumption on the sign of the
sectional curvature on manifold, de Carvalho Bento et al. (2016) established the global convergence of
any bounded sequence generated by the proximal point method. The Kurdyka—t.ojasiewicz property on
Riemannian manifold is a powerful tool for convergence analysis of manifold optimization methods.
Bento et al. (2011) analyzed the global convergence of a steepest descent method and a proximal point
method via Kurdyka—t.ojasiewicz property. Hosseini (2015) proposed a subgradient-oriented descent
method, and proved that, if the objective function has the Kurdyka—t.ojasiewicz property, the sequence
generated by the subgradient-oriented descent method converges to a singular critical point.

If g(-) in problem (1.1) is a regularization, function and the corresponding proximal operator is easy
to be obtained, then there exist several operator splitting methods for problem (1.1). By introducing an
auxiliary variable, the manifold constrained and the nonsmooth term can be handled separately. To do
so will result in two easy subproblems in the operator splitting methods. The splitting of orthogonality
constraints (SOCs) method (Lai & Osher, 2014) is proposed for solving a special case of problem (1.1),
in which &/ = .# is the identity operator and .# = St, is a Stiefel manifold. That is,

rrkinf(X) +gX)st. X € St,. 2.1
For problem (2.1), the SOC method considered the following separable reformulation:

;nylrb ) +gQ)st.X=Y,X=0,Xe€St,. 2.2)

The partial augmented Lagrangian function associated with problem (2.2) is

4
2

Ly i=f()+80) — (AL X = Y)+ SIX — Y} — (A, X — Q)+ gnx - 0l3,
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where A, A, is the Lagrangian multiplier and B is a penalty parameter. The SOC method updates the
iterate via

Xkt = in Lg(X, Y5, 05 A%, AY),
arggg‘ﬂ ﬁ( 0o 1-A43)

Yk+1 = arg minY Eﬁ (Xk+l, Y’ Qk» AI{: Alzc)v
Q! = arg ming, L (XL YL 05 Ak, AR,
AP = Ak — BT — Yk, AR = A — gkt — ok,

The X-subproblem is ‘easy’ via projection on St,, and the Q-subproblem is often structured in real
applications. The Y-subproblem is a classical smoothing optimization problem in Euclidian space and
can be solved by an efficient optimization method.

Kovnatsky et al. (2016) proposed a manifold alternating direction method of multipliers (MADMM)
for solving a separable optimization problem of the form

I}(li}l/‘l X +g¥)st AX=Y,X e M.

The associated partial augmented Lagrangian function is

B

LyX, Y5 4) = f(X) +g(Y) = (A, AX = ¥) + Z|LAX = V3.

The MADMM updates the iterate as follows:
X1 = arg min £ X, Yk, Ak R
g Poyy ,3( )
Y =arg rn)in Ly X1y, AR,
Ak-‘r] :Ak _ ﬁ(AX]H-l _ Yk+1).
To the best of our knowledge, the global convergence of both SOC and MADMM keeps open so far.
Chen et al. (2016) proposed an augmented Lagrangian method (ALM) to handle problem (1.1) with
o/ = S and .# = St,. They also considered the separable problem (2.2). They adopted the ALM

of multipliers framework for problem (2.2), which first obtains a solution for primal variable (X, Y, Q)
jointed by X, Y and Q and then updates the multipliers. The iterate is produced by

(XKH Ykl ghtly — argXEISIg,I}/,Q Ly(X.Y, Q;Ak,Aé),
Allc+1 _ AII _ ,B(XkH . Yk+1)’ 2.3)
Al§+1 _ Alé — B(XKHL oty
The subproblem on (X, Y, Q) in (2.3) is intractable; the authors handled it by a proximal alternating

minimization method. Hong et al. (2017) considered a more general form of problem (1.1) where .# is
a generalized orthogonal manifold and proposed an approximate ALM, in which a proximal alternating
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linearized minimization method is employed for iteration subproblem. Chen et al. (2020) proposed a
manifold proximal gradient (ManPG) method for problem (1.1) with &/ = .Z, i.e.,

mXinf(X) +8X), st.Xe M.
At the kth iteration, the search direction DX of the ManPG is get by solving

B
IDI|% + g(X* + D),

min <D, grad f(Xk)> +5 o

s.t.D e Tka.

The constraint D € Tyx.# can be represented by a linear system .« (D) = 0, where .7 is a specified
linear operator at the kth iteration. Subproblem (2.4) is solved by applying a semismooth Newton method
to its KKT system. The next iterate X**! is then obtained by

Xk+1 = ka (Olka),

where Z is a retraction operator; see Definition 3.1 in the next section. In addition, Wang et al. (2019)
consider an ¢, principal component analysis problem and proposed a novel accelerated version of the
proximal alternating maximization method.

2.2 ALM for manifold optimization

Another line of work handles a manifold constrained optimization problem via the augmented
Lagrangian framework; see Sahin et al. (2019) and Liu & Boumal (2020). In particular, Liu & Boumal
(2020) proposed an ALM to solve the optimization problem on manifold with extra constraints, which
has the form

min f(x)

st. xeM . 2.5)
gix) <0forieZ ={l1,..,n}
hj(x) =0forjeE={n+1,..,n+m}.

Let Z = {x : g;(x) < 0for1 € & = {1,...n}; h(x) = 0forj € & = {n+1,..,n+ m}} and
g(x) = 84 (x) be the indicator function of set &, i.e., g(x) = 1if x € F; otherwise, g(x) = oo.
Then, problem (2.5) can be formulated to a special case of problem (1.1), in which g(x) is the
nonsmooth component in the objective function. They proposed two approaches to problem (2.5): one
is a Riemannian ALM and the other is an exact penalty function method on Riemannian manifold. For
the first approach, the augmented Lagrangian function associated with problem (2.5) is given by

P A% A 2
£p(x,)»,)/) =fx) + 5 Z (hj(x) + —j) + Zmax [O, ; —i—gl-(x)]

je€ i€l
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The x-subproblem is a smooth manifold optimization problem and solved inexactly in this Riemannian
ALM. Similar to this approach, we also use the augmented Lagrangian framework in this paper, but
our MIALM is totally different to this Riemannian ALM proposed by Liu & Boumal (2020). The
main difference is that the proximal operator and Moreau envelope technique are used to handle the
nonsmooth term g(x) in our MIALM, while the Riemannian ALM penalizes all constraints explicitly
to the objective function to get an augmented Lagrangian function. For the second approach, the
exact penalty function method proposed by Liu & Boumal (2020) firstly reformulates the constrained
optimization problem on manifold to an unconstrained optimization problem on manifold, which is as
follows:

min f()+p | > max{0, g} + 3 I

i€l je&

Then, the authors adopted some smoothing techniques for the nonsmooth term (i.e., the second part)
in the above exact penalty function. It is different from the problem and methods considered by Liu
& Boumal (2020), the objective function of problem (1.1) itself has a nonsmooth component g(-),
and in our MIALM, we do not use any smoothing technique to the nonsmooth function g(-). What
is more noteworthy is that, by the Moreau envelope technique, our method only needs to solve a smooth
manifold optimization subproblem at each iteration, which has the same complexity as the smoothing
exact penalty function methods in Liu & Boumal (2020).

Sahin et al. (2019) proposed an inexact ALM for a nonconvex and nonsmooth problem with
nonlinear constraints, which has the form

min f(x) + g(x¥), s.t. c(x) =0, 2.6)
xeRd

where f(-) is a smooth nonconvex and g(-) is a proximal-friendly convex function (not necessarily
smooth), ¢ : RY — R™ is a nonlinear operator. If c(x) = 0 defines a manifold (for example c(x) :=
xTx — 1 = 0 defines a Stiefel manifold), problem (2.6) is also a special case of problem (1.1). Sahin
et al. (2019) employed a general augmented Lagrangian function by penalizing the nonlinear equality-
constraint to Lagrangian function of problem (2.6), i.e.,

Lgx,y) =f(x) + (c(),y) + §||0(x)||§ +8(),

which results an unconstrained Lagrangian saddle point problem in Euclidean space. At each iteration,
they use a classical optimization method to solve the x-subproblem inexactly. In contrast with their
method, we use a partial augmented Lagrangian function for problem (1.1), which keeps the resulting
subproblem to a manifold constrained optimization problem. More importantly, our MIALM also keeps
the iterate sequence satisfying the manifold constraint via some manifold optimization tools, such as
retraction and vector transport, etc.

3. Preliminaries for Riemannian optimization

An n-dimensional manifold .# is a Hausforff and second-countable topological space, which is
homeomorphic to the n-dimensional Euclidean space locally via a family of charts. Let (U, ¢) be a
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chart, where U is an open set with x € U C .#, and ¢ is a homeomorphism between U and open set
o(U) C R™. A tangent vector £, to ./ at x is a mapping such that there exists a curve y on .# with
y (0) = x, satisfying

d(u(y (1))

u:=yOu= 7

li—o Yu € I,(M).

The tangent space of .# at x € .# is denoted by T,.# and defined as the set of all tangent vectors to
 at x. A Riemannian manifold (.#, (-, -)) is a smooth manifold equipped with an inner product (-, -) .

at each point x € .#. For £, € T .4, we use ||§|l, = (Sx,sx)x to denote the norm induced by the

Riemannian metric. The Riemannian gradient grad f(x) € T,.# is denoted as the unique tangent vector
satisfying (grad f (x), €), = df (x)[£], forall & € T,.# . 1f .# is a Riemannian submanifold embedded in
Euclidean space, we have gradf(x) = Proj;,_, (Vf(x)), where Vf(x) is a Euclidean gradient, Proj;_,
is the orthogonal projection operator on to the tangent space 7,.#. Let T.# := \J,c 4 T be the
tangent bundle of .#. The orthogonal complement of T,.# is called the normal space to .# at x and
denoted by N .7 .

DEerINITION 3.1 (Retraction, Absil e al., 2009). A retraction operator on manifold ./ is a smooth
mapping % : T.# — .#, which has the following properties: for a givenx € .#,let Z, : T,.M — A
be the retraction Z restricted to T,..# , then

e Z%.0,) = x, where 0, is the zero element of 7,.#;

e d%.0,) =idy_,, whereidy_, is the identity mapping on 7.7 .

DEFINITION 3.2 (Vector Transport; Absil ef al., 2009). A vector transport .7 is a smooth mapping
T:TM&TM - TM: (&)~ T, () e TMVxeM,

which satisfies that

o & =& holdsforVé €T .4,

o T (ak +bt) =a, €)+bT, ().

We also use the notation .7,_, ., (£,) to indicate 9,71 (&,), where 1, is such that y = Z,(n,).

X—>y
DEerFINITION 3.3 (The Clarke subdifferential on Riemannian manifold;Yang et al., 2014). For a locally
Lipschitz continuous function f on ., the Riemannian generalized directional derivative of f at x € .#
on direction v € T,.# is given by

o foo He®) + DoV —f o™ (p()
folxv) = ;1m sup ; >
—>X 110

where (¢, U) is a coordinate chart at x. The generalized Riemannian gradient or the Clarke Riemannian
subdifferential of f at x € . is

Ipf(X) = {€ € TM 1 (E,v), <f°(x;v),¥v € T,M}. 3.1)
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Consider a Riemannian manifold minimization problem of the form
min, g f(x) st ¢(x)=0,i=1,---,m. 3.2)
Let 2 :={x e A : c;(x) = 0,i = 1---,m}. Given x* € 2, assume that the linear independent

constraint qualification (LICQ) holds at x*, then the normal cone .45, (x*) is defined by Yang et al.
(2014):

N (x*) = IZAZ- grad ¢; (x*)

i=1

YIS Rm] . (3.3)

The first-order optimality condition of problem (3.2) can be elaborated via the following lemma.

LEMMA 3.4 (Zhang et al., 2020, Proposition 2.7) If x* € §2, and
Of (") N (=Ng(x¥)) # 0, (3.4)

then x* is a stationary solution of problem (3.2).

4. The MIALM
4.1 The proposed method, MIALM
Throughout this paper, we make the following assumptions.

ASSUMPTION 4.1

A: Manifold .# is a compact Riemannian submanifold embedded in E.

B: Function f is smooth, but not necessarily convex, g is a nonsmooth convex function and dg(Y) is
uniformly bounded for all Y, where dg(Y) is a subdifferential of g at Y.

C: There exist constants « > 0 and 8 > 0 such that, for all X € .# and all U € Ty.#, we have

H Ry (U) — Xy < a|lUlly,
“.1)

IRy (U) =X — Ully < BIUI3.

REMARK 4.2 Assumption 4.1 is a standard assumption. Assumption 4.1 holds for usual nonsmooth
functions, e.g., g(X) = [IX]|;; see Qu et al. (2015). For Assumption 4.1, the constants « and 8 depend
on the manifold and the dimensions. For instance, the polar retraction and the QR retraction on Stiefel
manifold satisfy this regularity assumption; see Boumal et al. (2018).

By introducing an auxiliary variable Y = 27X, problem (1.1) can be reformulated to

r)I(l’llgl fX)+g), st AX=Y, X e M. 4.2)
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The partial Lagrangian function associated with problem (4.2) is
LX,Y;2) =fX)+g(Y) —(Z, AX - 7Y). (4.3)

By using Lemma 3.4, the KKT conditions of problem (4.2) can be stated as follows.

PROPOSITION 4.3 (Zhang et al., 2020, Theorem 2.8) Suppose that Assumption 4.1 holds. Then,
(X*,Y*) € A/ x R™ satisfies the KKT conditions of problem (4.2) if there exists a Lagrange multiplier
Z* € R™ such that

0= Projp, pm(Vf(X*) — A*ZY),
0e ag(Y") + 2%, 4.4)
0= AX* —Y*,
where o7* is the adjoint operator of ..
The augmented Lagrangian function associated with (4.2) is

L,(X.Y:2) = L. Y;2) + S 14X = Y13

=fX) +g¥) - (Z, AX-Y) + gIIAX - Y5 (4.5)

For a given (Xk, Yk, zk ), the manifold augmented Lagrangian method (MALM) produces the next iterate
via

XeM,YeRm (4.6)

XL YR =arg  min - L,(X,Y;Z5),
Zk-H — Zk _ p(Axk+1 _ Yk-l—l).

We note that the (X, Y)-subproblem in iteration (4.6) is intractable due to coupling on variables X and
Y. We need to handle it by some special techniques, the Moreau envelope provides a possible approach.
At the kth iteration for the first subproblem in (4.6), for fixed p > 0 and Z, we aim to solve

min L (X,Y;Z). 4.7
XEM,IYER’” ol ) “.7)

Fixed X, the optimal solution Y of (4.7) is

Y = prox,,, (AX — %Z) , (4.8)

where prox, is a proximal mapping of g defined as follows

. 1 2
prox, (v) := arg min [g(y) +5ly - VII2] :
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Denote ¥,(X) := infy Zp (X,Y;Z). Then the optimal solutions (X,Y) for (4.7) can be computed as
follows:

X in ¥,(X), Y AX 1z
= arg min , Y = prox —-—=Z).
gXEM z p 8/p 0

By this way, the MALM iterate (4.6) can be rewritten to
XM = argminy g Y (X)),

Ykt = proxg/p(./éle+1 - %Zk), 4.9)

Zk+1 — Zk _ p(Axk-l—l _ Yk+1).

It is worth noting that the variable Y does not appear explicitly in the X-subproblem of iteration (4.9).
However, the X-subproblem in iteration (4.9) has not closed the solution in general, and it may be very
expensive to get an exact solution. Fortunately, we only need to compute an approximate solution of
X-subproblem at each iteration, and we describe the resulting method as the MIALM. Algorithm 1
summarizes the proposed MIALM in details.

Algorithm 1 Manifold inexact augmented Lagrangian method, MIALM
XY e #,7° € R™. Given e

I: Input:LetZ ;, <Z

n max> 0,6g >0,0p > 1,0 >1,0<7 < 1.

mir‘lZ
2: fork=0,1,--- do

3:  Produce the next iterate (X**1, Y¥1) via: Get X**! by inexactly solving
min Y (X 4.10
XeM wzk( ) ( )

with a tolerance €, where {€; }; . | 0. And let

Ykl = plroxg/pk(.AXkJrl —Zh.
4:  Update the Lagrangian multiplier Z*! by
Zk+1 — Zk _ pk(AXk+1 _ Yk+]). (41])

Project Z“*'on B =1{2:2,,,,<Z<Z

max

} to get ZKF1,
5:  Update penalty parameter by

P if JAXKEL — YR < o AXE — YRl

g otherwise (4.12)

Pr1 =

6: end for
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REMARK 4.4

ey

@)

3

“

4.2

The proposed MIALM is actually an ALM-type method. The complexity of X-subproblem is the
same as that of MADMM. However, the proposed MIALM obtains an optimal solution on variable
(X, Y) jointed by X and Y, which guarantees the convergence, but the convergence of the MADMM
keeps open until now.

Section 4.2 will show that ¥ is continuous differentiable on manifold and its derivatives are easy
to compute. Thus, all efficient Riemannian optimization methods, such as Riemannian gradient
method, Riemannian Newton method, etc., are adoptable for the X-subproblem.

The proposed method is also utilizable for smooth Riemannian optimization problem under set-
constrained, in which g(Y) = 6, (Y) is the indictor function of set £2, and £2 is the constraint-set.

Only an approximate solution X**! of subproblem (4.10) in our MIALM is needed for the
convergence. The stopping criteria for X-subproblem (4.10) is given by

llgrad V5 (Xk+l) llxert < €,

where ¢, — 0ask — oo.

Riemannian optimization subproblem

The main computational cost of Algorithm 1 is to solve the subproblem (4.10). Given Z and p > 0, we
consider the following minimization problem:

min {w(X) = inf £, (X, Y,Z)}. (4.13)

By the closed form solution of Y, we reformulate v (X) as follows:

YOO = infL,(X,Y,2) =f(X) + g(prox,,(AX = Z/p))

P _ A TN
+ 5 | =210~ prox = i)~ 51213

= f(X) +M,/” (AX - lZ) - L||Z||§. (4.14)
P 2p

In the second equality, Mg : E — R is the Moreau envelope of g defined by

. mi L2
Mg(v).—mym [g(y)+zully V||2]- (4.15)

The following lemma state that M} is a continuously differentiable function, even if g is not.

€20z Jaquiejdes g uo Jesn Ateiqr] ABojouyos | ® 9ousIog [euoneN Aq 8EZ0659/SS9L/S/Sy/olonie/eulewil/woo dno olwapeae//:sdiy Wol) papeojumoc]



1664 K. DENG AND Z. PENG

LeEmMMA 4.5 (Beck, 2017, Theorem 6.60) Let g : E — R be a proper closed and convex function, and
i > 0. Then My is ﬁ-smooth in E, and for all v € E one has

" 1
VMg ) = ;(v — proxﬂg(v)).

By the property of the proximal mapping and the Moreau envelope, one can readily conclude that
¥ (X) is continuously differentiable and

Vir(X) = VFX) + pA* (.AX — %Z — Prox,, (.AX — %2))

= Vf(X) + pA* (proxpg* (AX - %Z)) . (4.16)

The second equality is followed by the important Moreau identity:

proxﬂg(v) + Mproxg*/u(v/,u) =,

where o > 0 is a given parameter, g* is the conjugate function of g defined by
g"(x) == sup{{x,v) — g()}. (4.17)
v

In what follows, we show that 1 is a retraction smooth function with respect to retraction % in the sense
that, for VX € .# and VU € Tyx.#, one has

L
V(Rx (1)) = ¢¥(X) + (grad ¥ (X), U)y + TWIIUH?(, (4.18)

where l_,w is a constant associated with & and 8 in Assumption 4.1. Lemma 4.6 shows that the connection
between the Lipschitz continuity in Euclidean space and the smoothness in Riemannian manifold, for
the proof, the readers are referred to Lemma 2.7 in Boumal ef al. (2018).

LEMMA 4.6 Let E be a Euclidean space and .# be a compact Riemannian submanifold embedding in
E.If f : E — R has Lipschitz continuous gradient in the convex hull of .# then there exists a positive
constant £, such that

14
FRD) =00 + (1, grad f(0),. + S Il (4.19)

holdsatVn e T ..
By Lemma 4.6, we get the Riemannian gradient of ¥ (X)

grad ¥ (X) = ProjTXM (Vi (X)).
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So problem (4.13) can be solved by some Riemannian optimization methods. In this paper, we did
not adopt the second-order method because ¥ has only continuous gradient: the Riemannian gradient
grad ¢ is continuous, but not differentiable. Although the Riemannian semismooth Newton method
(de Oliveira & Ferreira, 2020) can be adopted, its convergence analysis is not clear due to i being
nonconvex in Euclidean space and the monotonicity of grad ¢ cannot be guaranteed. For first-order
methods, the Barzilai-Borwein (BB) gradient method is easy to implement and effective in Euclidean
space. Thus, we adopt a Riemannian Barzilai-Borwein gradient (RBB) method proposed by lannazzo
& Porcelli (2018) to solve problem (4.13). At the kth iteration, for given X*, the RBB method get X*+!
by

X = R (—y 8h), (4.20)

where g€ = grady (X¥) is the Riemannian gradient of ¥ at X* and o is a stepsize. Similar to Euclidean
case, we choose an appropriate «, via a line search strategy. Given o and y, we try to find the smallest
integer [ such that

Y (R (—a'afPe)) < v (xh) — yo'afPg |5, (4.21)
where (xfB is an initial step size. A good initial step size can reduce the number of line searches and
improve the efficiency of the method. It is well known that an initial step size computed the BB method

can speed up the convergence in Euclidean optimization. In this paper, we choose an RBB step size
proposed by lannazzo & Porcelli (2018), i.e.,

k ok k ok
1 (S S )Xk+l 2 <S >y )Xk-H
Tl = o OF Tfy = ——o—, (4.22)
<Sk7yk)xk+l (yk7yk>xk+l
where y* 1= gt — T i (89, 55 i= T yen (—ayg) and Fyk_ yirr denotes an appropriate

vector transport. The RBB gradient method for X-subproblem (4.13) is summarized in Algorithm 2.
The results on global convergence of the RBB algorithm was established by Theorem 3.1 of Iannazzo
& Porcelli (2018).

5. Convergence analysis

We present the global convergence analysis of Algorithm 1 in this section. For convenience in notation,
we rewrite problem (4.2) to a standard constrained optimization problem on manifold. Let A4 = .# x
R™ be a product manifold and W = (X,Y) € 4. Then, problem (4.2) can be rewritten to

min O(W). s.t. k(W) =0, W e N, 5.1)

where 8(W) = f(X) 4+ g(Y) and h(W) = [/, —FZ]W € R™ is a linear operator where .# denotes the
identity operator. The partial augmented Lagrangian function associated with problem (5.1) is

L,(W:2) = 6(W) = 3 Z[MW)), + 5 D W1
i=1 i=1
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Algorithm 2 Proximal point algorithm for penalty problem

1: Given: X € ./, tolerance ¢ > 0, initial step size ong . Let g% = grad ¥ (X?), the sufficient
decrease parameter y and the step length contraction factor o € (0, 1).
Initialize: k = 0.
while||g“|| > € do
Find the smallest positive integer & that satisfies (4.21) and set o := ahafB .

Compute X! = Zyu(—a g°), and g1 = grad ¢ (X*+1).

AN A

Compute 7, ; via (4.22), and compute the new step size osz | by

BB _ H min{a,,,., max{o, i, Ty 3 if(sk,yk)XHl > 0,

ey =
k+1 i
Opax otherwise.

7. Letk:=k+1.

8: end while

The KKT conditions of problem (5.1) are given by: if W* is a solution of (5.1) then there exists a
Z* € R™ such that

m
0 € 9p0(W*) — Zgrad(Z;k[h(W*)]i), W) =0, W*e N, (5.2)
i=1
where 0,0(W*) is Riemannian subdifferential of 6 at W*. The KKT system (5.2) is identical to
(4.4) because of that .# is a Riemannian submanifold embedded in Euclidean space. Specifically, let
W* = (X*, Y*), we obtain the equivalence between (5.2) and (4.4) by

0 grad f(X*) — Zgrad(Zf[AX*]i) (gradf(X*) — PTX*M(A*Z*))
€ i=1 =
0,g(Y*) +Z*
9eg(Y*) + Z* RS
Py, (VF(X*) — A*Z")
=( T M ) (5.3)

0g(Y*) +Z*

where the latter equation use the fact that Y lies on the linear manifold R™ and then d,g(Y*) = 9g(Y*).
Inspired by Yang et al. (2014), the constraint qualifications of problem (5.1) is given by the following
definition.

DEeFINITION 5.1 (LICQ). LICQs are said to hold at W* € .4 for problem (5.1) if

{ grad[h(WH)],|i=1,2,---, m} are linearly independent in Ty V. 54
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The following lemma proves that the LICQ (5.4) always holds at VW € .4 for our problem (5.1).

LEMMA 5.2 For arbitrary compact Riemannian manifold ./, the LICQ condition (5.4) of problem (5.1)
always holds at VW € A = .# x R™.

Proof. Let hi(x) = X € R", hy(Y) = =Y € R™, then (W) = h;(X) + h,(Y) and

grad (W) = (gradx h(W) ) _ (gradhl(X) ) .

grady h(W) grad h,(Y)
It is sufficient to show that {grad[h,(Y)];,i = 1,2,---,m} is linearly independent. Notice that Y lies
on a linear manifold, i.e., grad[h,(Y)]; = V[h,y(Y)];. It is obvious that {V[h,(Y)];,i = 1,2,--- ,m} is
linearly independent, and the proof is completed. O

By Remark 4.4(4), step 2 of Algorithm 1 satisfies the following condition: the iterate X**! is an
€;-stationary point of X-subproblem (4.10), i.e.,

llgrad Yz X i < €. (5.5)

Given W = (X,Y), and & = (&, &y) € Ty, where & € Ty # , &y € R™. The norm of £ is defined as
€ llw = léxllx + lEy ll,. Before presenting our analysis of Algorithm 1, by (5.5), we have the following
lemma.

LEMMA 5.3 If X**! is an approximate solution of problem (4.13) satisfying (5.5), and Y**! is updated
via (4.8) and WK1 = (X*+1 y*+1) Then, there exists v, such that

vE € dpL, (W Z5), and 08 yar < .

Proof. By a slight abuse of notation, we write BY,prk(WkH;Zk) as the Riemannian Clarke
subdifferential of fpk(W"H;Zk) with respect to Y, then 9,7 is given by

k+1. 7k
OpL,, (WHHT, ZK) = ( grady £,, (W Z6) )
k 9

dy gL, (WK1 ZF)
Assume that 8¢ = grad o (X*1) and 18, llyes1 < €, then
8k = Pr M (V¢Zk(xk+1))
=Priim (Vf(XkH) +pA” (AX"“ — Z¥/py — prox,,, (,4)("+1 _ izk)))

=Py k1M (Vf(Xk+l) + ,Ok.AT (.AXk'H - Zk/pk _ Yk—H))
(

T M vxﬁpk(wk“;z")) — grady £, (W15 Z5). (5.6)

€20z Jaquiejdes g uo Jesn Ateiqr] ABojouyos | ® 9ousIog [euoneN Aq 8EZ0659/SS9L/S/Sy/olonie/eulewil/woo dno olwapeae//:sdiy Wol) papeojumoc]



1668 K. DENG AND Z. PENG

By (4.8), Y = arg min Z, (X1 y; Z%), we have
YeRm k

0 € dy L, (WL ZK), (5.7)

ol

Notice that the domain of Y is R™, which is a linear manifold, (5.7) implies that
0 € dy gL, (W ZH). (5.8)
Combining (5.6) and (5.8), and let v, = (6;,0™), we have that

v € gL, (WK1, ZH)
and [|v; [lyx+1 = 18 llxk+1 < €. The proof is completed. O

THEOREM 5.4 Suppose {Wk}keN is a sequence generated by Algorithm 1, Assumption 4.1 and (5.5)
hold. Then, sequence { WX} ren has at least one cluster point. Furthermore, if W* is a cluster point then
W* is a KKT point of problem (5.1).

Proof. To prove the first part of Theorem 5.4, we need firstly to show that sequence {W*},y is
bounded. By Assumption 4.1, .# is a compact submanifold embedded in [, then {X*} eN 1s bounded.

By Y&+l = prox, (e Xk — ﬁzk), there exists v € 9g(Y**1) such that

= p (AXk—H _La_ Yk+1) _0.
Pk
Again using Assumption 4.1, dg(Y**1) is a bounded set, sequence {1*} eN 18 bounded. It is obvious that
Z*e B=1Z:2,, <Z < Z,,) is bounded. Since sequence {p;};cy is nondecreasing, we have
or = 0o (Yk € N), deduces that {¥*}, _y is bounded. In summary, sequence {W*}, _ is bounded.
Next, we show that W* is a feasible point of (5.1). By the updating rule of {Wk}keN in Algorithm 1,
we have W* e 4. If { O Jken 18 bounded, by the updating rule of o, there exists a k; € N such that

IBWR) [l < Tllh(WE D)o, VK > Ky,

w’
where 1 € (0, 1). Which deduces i(W*) = 0. If {p,} is unbounded, by Lemma 5.3, we have
v e aRﬁpk(Wk+l;Zk)» WK it < €
where ¢, | 0 as k — oo. There exists UF e 8R9(Wk+1) such that
- 5 p
v = UF 4> grad (—z{‘[h(W"“)]i + ?"[h(W"“)]?)

i=1

=U"+ D PN ((—Zf + Pk[h(Wk“)L-) V[h(W"“)],») : (5.9)
i=1
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Dividing both sides of (5.9) by o, we get
m
> Pron (52 o+ OVL) VIRV = 0F = 0970
TWk+1N il Pk i i k>
=1

where {ZF} is bounded, and v¥ | 0. Note that (W) = f(X) + g(Y) and g is a convex function on E, and

50 (W) = (gradf(X) ) _ (gradf(X) )

9r8(Y) ag(Y)

Invoked Proposition B.24(b) in Bertsekas (1997), we get the boundedness of (J;cn dg(Y*) by the
boundedness of {Y*}. In addition, f(X) is a smooth function and .# is a compact manifold, which
implies Riemannian gradient sequence {gradf (Xk)}keN is bounded. We have that (J; oy 8R6(Wk) is
bounded, which deduces {U¥},y is also bounded.

By the boundedness of {(Wk, ZK)}, there exists # C Nsuchthat lim Wk = w*. Taking limits

ke A k— oo

as k € ¥ going to infinity on (5.9), and using the continuity and differentiability of /, we have

> ([(W*));) grad[h(W*)]; Z[h(W*)]PTW*N(V[h(W*)])
i=1 i=1

= > Py A TROWOL VAW = 0.
i=1

Note that LICQ holds at W* by Lemma 5.2, we conclude that [2(W*)], = 0 for all i.

Since {U*},y is bounded, there exists a subsequence .#; C .# such that lim U* = U*.
k— 00,ke ]

Recall that  lim P WK = W*, we get U* € 3,6(W*) by the closedness property of the limiting
k—00,ke

subdifferential. Together with Zf‘H = sz + pk[h(Wk+1)]i, Vi, by (5.9), we have from Algorithm 1 that
Vke A,

m
K= U3 P (2 VIRV
i=1

m
= U 4>z grad[h(WHh,, (5.10)
i=1

where [|[VK|| i1 < €, and UF € 3,0 (WHH).
We claim that {Z¥} is bounded. Otherwise, assume that {Z¥} is unbounded, by (5.9), we have

Uk m {<+1 i+l l)k
| o | erad W =
12T ; 12T FTZE T
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. . . k+1
€ [—1, 1]is bounded, there exists a subsequence %, C .#] suchthat  lim %T =
k—ooke s 125 lloo

Z, where Z is a nonzero matrix. Taking limits as k € 5 going to infinity, we obtain

k+
Since —2——
1Z5 oo

m
> 7, grad[h(W")]; =0,
i=1

which leads contradiction to the LICQ condition at W*.
Using the boundedness of {UX} and {v*} | 0, there exists a subsequence 73 C %, such that

lim UF=U*and lim Z* = Z*. By the continuity of mapping grad h, and taking limits as
k—o00,ke 3 k—00,ke 3

k € JZ; going to infinity on both sides of (5.10), we have

U* + >z} grad[h(W*)]; = 0, (5.11)

i=1

and complete the proof. O

6. Experiments

In this section, some numerical experiments are presented to evaluate the performance of our MIALM.
We compare our algorithm with the existing methods, including SOC (Lai & Osher, 2014), MADMM
(Kovnatsky et al., 2016), PAMAL (Hong et al., 2017), ManPG and its adaptive version (ManPG-adap)
(Chen et al., 2020). We also test the Riemannian subgradient method (Rsub for short) proposed by Li er
al. (2021). At the kth iteration, the Riemannian subgradient method gets X**! via

X = Ry (=, VrF (X)), VRF(XY) € 0gF(X"),

where 05 F (X*) denote the Riemannian subgradient of F at X* and ¥y 1s a step size. For the MADMM,
the Riemannian manifold optimization subproblem is also handled by RBB gradient method (Algorithm
2). We use the polar decomposition as the retraction mapping in our MILAM, MADMM, ManPG and
the Riemannian subgradient method. For the SOC, PAMAL and ManPG methods, we use the code
provided by Chen er al. (2020) (all codes are available!). All experiments are performed on a Linux
server with a 12-cores Intel Xeon E5-2680 CPU and 128 GB memory. The reported time is wall-clock
time in seconds. The codes of our algorithm are available at https://gitee.com/DENGKANGKANG/
mialm_code.

6.1 Stopping criteria

In our experiments, the CMs in physics and SPCA problems are used as test problems. The following
relative KKT residual of problem (1.1) is set to a stopping criterion for our MIALM and MADMM,

! https://github.com/chenshixiang/ManPG
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both involve primal variable (X, Y) and Lagrangian multiple Z:

N bl
PO+ | AXK|, + YK,
: k k 2
| Proir, (V7 — 475
ng = : 6.1)

L+ [vresl,

H.AX]‘ — proxg(.AXk — 75 Hz
1+ [ AXE],

Ne =
The MIALM and MADMM methods are terminated if
error ;= max {np, Ng» nc} < tol, (6.2)

where ‘tol’ is a given accuracy tolerance. Both SOC and PAMAL generate iteration sequence
{(Xk , YK, Qk)}, which are given by (??) and (2.3), respectively, and both are terminated if

X — ¥¥ll, IXC =0, 63)
max {1, |5, XK} max {1, [X¥]|,, 1041} ~
The ManPG and ManPG-A algorithm are terminated if
IEAS)]1, < tol, (6.4)

where E(AX) is given by Chen e al. (2020). Since the evaluation criterion is different for different
methods, we first run our MIALM and get the objective value F,, then for the other methods except the
Riemannian subgradient method, we give three conditions as follows:

(1) the criterion listed above is hit with the given tolerance;
(2) aspecified maximum number of iterations is reached;
(3) the objection value satisfies F X <F w+ 1074,

To be fair, we terminate those methods when one of the three conditions is satisfied. For the Riemannian
subgradient method, there is no evaluation criterion, it is terminated whenever one of the latter two
conditions listed above is hit.

6.2 Tested problem 1: CMs in physics

In physics, the CMs problem seeks spatially localized solutions of the independent-particle Schrodinger

equation:

Hp(x) = 2 (x), x € 2, (6.5)
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where H = —%A and A is a Laplacian operator. Consider the one-dimensional free-electron (FE) model
with H = —% 2 in our experiments. By a proper discretization, the CMs can be reformulated to
min r(XTHX) + p||X||;, st. X'X=1,
(min 1r( )+ pllX1, v (6.6)

where H is the discretized Schrodinger operator, u is a regularization parameter. The interesting readers
are referred to Ozolin$ et al. (2013) for more details. For problem (6.6), both SOC and PAMAL solve
an equivalent form as follows:

min tr(X"HX) + pu|Y], st. X=Y.X=0,0"0=1.
X,Y,QG]R”XV

The MADMM handles a separable reformulation of the form

min (X THX) + u|Y|, st. X=Y,X'X=1.
X, YeRnxr

In our experiments, the domain 2 := [0,50] is discretized with n equally spaced nodes. The
parameters of our MIALM are setto T = 0.99,0 = 1.05, pg = Ao (H) /2, Z iy = —100- 14, Z 0k =
100 - 1,,,,2° = 0,4, and ¢, = max(107>,0.9%) where k € N is iteration counter. We terminate
MIALM if the stopping criterion (6.2) is hit with tol = 1078 % n % r or iteration counter k > 5000.
The inner iteration is terminated if ||grad v« X" xk =< € or inner iteration number exceeds 100.
For the MADMM, the penalty parameter is set to p = A, (H)/2, where A,  (H) denote the largest
eigenvalue of H, the tolerance of the stopping criterion (6.2) is set tol = 1078 % n % r and the maximum
iterations is k., = 5000. The subproblem of the MADMM is terminated if the norm of Riemannian
gradient of X-subproblem is less than 107> or the inner iteration number exceeds 100. The parameters
of the SOC, PAMAL and ManPG are set the same as in Chen er al. (2020), the tolerance of the
SOC and PAMAL are set tol = 107°, and the maximum iterations are k., = 20000. For ManPG
and ManPG-adap, the tolerance in (6.4) is set tol = 1078 % n % r, and the maximum iterations are
kmax = 20000.

We test the performance of all methods for solving CMs problem (6.6) with different n, r and sparsity
parameter p, where n € {128,256,512};r € {10,20,30,50}; v € {0.05,0.1,0.2,0.3}. Table 1 reports
the computational results of MIALM and MADMM on CMs problem. Due to the space limitation,
Table 1 only shows the results of n € {256,512}. In Table 1, ‘obj’ denotes the objective value, ‘iter’
and ‘siter’ are corresponding to the number of outer iterations and the average number of inner iteration
per outer iteration, respectively. The parameters 7,,, 114, 11¢ are given by (6.1). Table 1 indicates that our
MIALM is over five times faster than MADMM in most instances, the number of iterations of MIALM

is significantly less than that of MADMM. In Fig. 1, we describe the relationship between two criterion,

€20z Jaquiejdes g uo Jesn Ateiqr] ABojouyos | ® 9ousIog [euoneN Aq 8EZ0659/SS9L/S/Sy/olonie/eulewil/woo dno olwapeae//:sdiy Wol) papeojumoc]



1673

MANIFOLD INEXACT AUGMENTED LAGRANGIAN METHOD

Downloaded from https://academic.oup.com/imajna/article/43/3/1653/6590238 by National Science & Technology Library user on 08 September 2023

S-91°'8 o8t G-o6ey 43! 8¢0T r'ee 7981 S-9¢€L9 PorTT §-209'¢ £'6C LE wT THIT98T 0€°0/08/TIS
S-3LL9 ¥-oL1'C 6-299°¢ €L €LV €L°09 THI8ee’T S-o%0'¢ P-ore'T §-969°[ 08¢ 99 06°S THo8¢ee’] 0C°0/0S/2IS
S-9Tr'8 -98¢'C S-o61'y 091 11! LOYY T+9860°1 §-916T $-966'T S-ove’l 9ve 8 LTY T+H9860°1 01°0/0S/¢IS
7oIe’] 7-or1e G-986'9 181 LT10T 69°Sy 1+9¢89°6 §-206'C oLY'T SN 0'6¢ 9 00°L 1+9289°6 S0'0/0S/T1S
§-990°¢ a4 §-299°'T L6l §8CC €L'6S 1420899 G-o6L'T T S-96%'1 84 901 oL's 1490899 0€'0/0€/CIS
S-9¥CT -9TS'1 ISEIvA S'LI SSLT PE6¢ [+381T°¢ ISEMIA 9671 9-906'L S$9¢ 8 ¥6't [+381C°S 0T°0/0¢/TIS
oIy 7oer'l SopET (9 yIcI 0¥'€C 1+98+%9°¢ §-260'C $-98T'1 S-oel'l I'1e 9¢ LTT 1+98+9°¢ 01'0/0¢€/2IS
S-9p8°S o811 §-91°¢ 9Ll 9scl1 18°6C 14906L°C S-o%SC $-98C'1 G-98¢'l 8'9¢ 99 [34% 1+968L°C S0°0/0¢/TIS
9-0L0°L 7oLyl 9-968'¢ o6l 000S L8368 1+9¢€0y 9-9TS’e G-980'8 9-916'1 944 €51 099 T+3¢€0t 0€'0/0C/TIS
G-oTel 7-o10'1 9-9T°L ¥'0C €9LT 9¢'YS 1+9L66'C SOLT'T §-20T'8 9-9¢¥'9 7oy 0cl 6¢°¢ 1+9L66C 0C°0/0C/CIS
$-90¢€'C G-oEE6 S-oLT'l ¥'81 celc ¥8°9¢ [+9LLY] SOLL'I 6916’8 9-99L'6 98¢ 86 06'¢ [+98L8°1 01°0/0C/¢IS
§-99¢'C -900'1 SoIY'T 9'0C sol LEBE 1+979C'1 S-201'T S-29%'6 9-990'9 L'8¢ SoT1 8T¢ 1+929T'1 S0°0/0C/TIS
9-9%T'6 $-960'S 9-96¢T’¢ 8°0C SLy 80'1S 1+98L6°1 S-oTL'T G-o88'% 9-98L°6 £6¢ €l ST 1+98L6°1 0€'0/01/2IS
69701 7966'C 9-9LL'S L'€T 000S LO'€9 [+90€°1 9-960'6 S-916'y 9-9p1'¢ 1894 €8¢ 59 1+90€1'1 0C0/01/CIS
9-9%1°6 $-960'¢ 9-20T°¢ (74 6£6¢ w96y 0+992T'8 9-2L0°¢ §-99¢% 9-9rL'1 0y 8S1 we 0+992T'8 01°0/01/2IS
9-9%1°¢ S-3CI'S 9-9C6'C 01T §S6T 18°1¢ 019928t 9-966'¢ SoIEY 9-9LTT ey €91 9¢°¢ 0+99Z8t S0°0/01/CIS
[SEINAd 7-oLT'1 SoLET L'L €911 L¥'91 THILYET 69986 y-oST'1 §-99T'S £l 53 IL°0 THILYET 0€°0/08/95¢
$-989'9 ¥-980°1 G-99¢°¢ 8L T€TT LY'ST THIG8IT SoFI'L el S-9I8'¢ Y 1€ L8°0 THIG8T'T 0C°0/0S/9SC
$-968'¢ et §-2L0C 88 8611 $8°81 HITI0'T G-EEy a4 ! §-91€T 0ve (94 €Ll THIT110'1 01°0/0S/9S¢
$-960°'S 20T’ 1 SILT 9°01 ¥SS1 8L'8C [+3091°6 §-200C §-201°6 S-9L0T 6'1¢ IS 0L'C [+2191°6 S0°0/0S/9S¢
$-99L9 G-9C9°¢ G-2L9¢ 18 1341 €Il 1+918¢°¢ G-981'S §-969'9 S-918C LvT [43 PET 1+3¥6€°¢ 0€°0/0€ /95T
SRILE §-2€9°L §-210°C 98 oor1 LOTT [+950¢Y SEIS Y §-9¢S9 SOLI'E e Ly 48! [+9%0€Y 0C°0/0€ /95T
6-966T SV9°L G-8¢'T L'8 6vvl 6901 T+oepT¢e §-20L'T SoITL S-29%'1 8'0¢ 44 S6°0 T+Ho¢pT'e 01°0/0€/9SC
Sl qaré S-3TY'L SoITT 6'8 ¥8¥1 (S 1+9016°C S-oI¥'T §-91'L S-o1El €'LT [43 67’1 1+9605°C S0°0/0¢/9ST
99168 G-2LO'S 9-969'v 96 99¢T 86°€l [+90T1°¢ 9-90L'8 SOLTY 9-96L'Y 1'6C S9 10°1 1+9021°€ 0€°0/0T/9ST
G-o81°'8 7-o6L'¢ G208y L'T1 000S S9'€e 1+2905€°C ISEIARY $-988°¢ SOLY'Y 8'8% 0001 L6°LT 1+905¢C 0C°0/0T/9SC
G-381°¢ $-968'1 G-oGL'T €8 yLET 8Y'L 1497281 SpL'T G-989'% 9-9LS°6 Lel oY S8'0 1+9228'1 01°0/0T/9S¢
S-9L6'T S-210°S §-o¢9'l I'6 (444! 98°L 1+9L90°1 §-oTV'T ISEIEN4 S-ove’l I'vC 129 LSO 1+9L90°1 §0°0/0T/9SC
LoIEL S-9¥ST L2291y SI1 06¢¢€ 9¢'TT 1498611 L9v0°L S-v¢T L-200'% 9'0¢ 8 oLo 1+9861'1 0€°0/01/9SC
SRLTY €971 S-EYC o€l 000S L8l 1+9780°1 9-960°¢ §-9TST 9-9L8°C o 91y ws 1+9€80°1 0C°0/01/9SC
$-960°1 §-9Ts'T 9-9L1'9 [ S80¢ €01 0+9CLT9 G-o¢C'l §-9¢1'T 9-989'8 £0¢ SL ¥9°0 0+92LT9 01°'0/01/9s¢
%01 G-9TST 9-9¢6'S ST1 orre 9L T1 0+99%L°¢ 9-9C¢’6 §-9TST 9-90¢°S L'LE LOT 111 0+99%L°¢ S0°0/01 /95T
ol Pl dy 1918 REIS own fqo ol Pl dy, 118 o)1 awn [qo
INNAVIN WIVIN [CGRRD)

SIWD uo WAV puv E‘NQNS.\Q Sjnsos NGN\Q.QGN:Q.SQU Y[

[ a19v],



1674 K. DENG AND Z. PENG

20 T T T 5 : : T
——MIALM ——MIALM-,, - - ~-MADMM-7_
- - -MADMM
sl = 1 | MIALM-7, MADMM-7,
3 0 MIALM-7;, ——MADMM-7 ||
S g
210 g
5 o
5.1 ’
0 .
0 2 4 6 8 8

cpu time(s) cpu time (s)

Fi1G. 1. The performance of MIALM and MADMM on CMs with n = 128, r = 10, u© = 0.05.

with cpu-time in the iterative process of one instance with n = 128, r = 10, u = 0.05. Those two criteria
are objective value and error, where error is given by (6.1). Although both MIALM and MADMM make
rapid progress lowering the cost in the early stage, MIALM eventually converge considerably faster than
MADMM, which is shown in Fig. 1 (left). Figure 1 (right) shows that both My and n,. of MADMM have
similar curve as MIALM at early stage, and 1, is decreasing slowly, leading to a shock of 7, and 1. The
reason for the slow decline of 1, is that the MADMM minimizing the variables X and Y, respectively, in
each iteration, while MIALM solves a joint minimization problem respect to X, Y. At the end, a sudden
drop for n, since n, has the same precision as 1, and 1.

We compare the accuracy and efficiency of MIALM with other algorithms using the performance
profiling method proposed in Dolan & Moré (2002). Let 7, ; be some performance quantity (e.g., time
or accuracy, lower is better) associated with the s-th solver on problem p. Then, one computes the ratio
r,s between 7, - over the smallest value obtained by n solvers on problem p, i.e., r, ; = m
For v > 0, the value

number of problems where log, (r, ) < ©

w(T) =

total number of problems
indicates that solver s is within a factor 2% > 1 of the performance obtained by the best solver. Then the
performance plot is a curve () for each solver s as a function of 7. In Fig. 3, we show the performance
profiles of two criteria: ‘relative-obj’ and ‘CPU time’, where ‘relative-obj’ is the relative objective value
defined by F/|F .|, where F is the objective value obtained by each method, F,, denotes the largest
objective value of all methods. In particular, the intercept point of the axis ‘ratio of problems’ and the
curve in each subfigure is the percentage of the lower/faster one between the two solvers. These figures
show that the objective value and the CPU time of our MIALM are better than other algorithms in
most problems. Table 2 give the detail results. The results show that the MIALM compares favorably to
the other methods. For the same objective function value, our MIALM takes less CPU-time. Figure 2
describes the relationship between objective value with cpu-time in the iterative process of one instance
with n = 128, = 10, u = 0.1. One can see that the MIALM and SOC, PAMAL are comparable for
CMs problem.
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FIG. 2. The objective function value vs cputime of MIALM and the compared algorithms on CMs with n = 128, r = 10, © = 0.1.
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F1G. 3. The performance profiles of MIALM and other algorithms on CMs.
6.3 Test problem 2: SPCA
Given a data set {b,,--- , b, } where b; € R the sparse PCA problem is
m
. Ty 12 T
. — : L X'X=1
min 21 Ib; — XX"b;113 + plX[l, st - (6.7)
=
where p is a regularization parameter. Let B = [by, - - - ,bm]T € R™*" problem (6.7) has the form
. T pT Tv _
min —tr(X" B' BX) + plX|l;, st. X' X=1,. (6.8)
XeRnXI‘

In our experiments, data matrix B € R™*" is generated via the following two settings.
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F1G. 4. The performance profiles of MIALM and other algorithms on SPCA with random data.

(1) Data matrix B € R™*" is produced by MATLAB function randn(m,n), which all entries of B
follow the standard Gaussian distribution. We shift the columns of B such that they have 0-mean,
and finally the column-vectors are normalized.

(2) Data matrix B € R™*" is selected from real data. In those real data, ‘Arabidopsis’ and ‘Leukemia’
are the gene expression data selected from Li & Toh (2010), ‘Staunton’ and ‘Ross’ are the NCI 60
data selected from Culhane ef al. (2003) and ‘realEQTL’ is the yeast eQTL data selected from Zhu
et al. (2008).

All methods are terminated with the same stopping criterion as that used on the CMs. The parameters
of our MIALM and MADMM are set to the same as that used in the CMs, except that the penalty
parameter is re-set to oy = )Lfnax (BTB) /2. For the SOC, PAMAL and ManPG methods, the parameter
settings provided in Chen et al. (2020) are copied, the interested readers are referred to Chen et al.
(2020) for details. We set m = 50 in these experiments.

The results in setting 1. We test the performance of all methods for solving different instances of
problem (6.8) induced by different n, r and sparsity parameter u, where n € {200, 300, 500, 1000};
r € {10,20,30,50}; u € {0.4,0.6,0.8}. Due to the space limitation, we only report the results of
n € {300,500,1000} and r € {20,30,50}. The total number of line search steps and the average
number of inner/outer iteration of the MIALM and MADMM are listed in Table 4. One can see that
MIALM is over 10 times faster than MADMM in most instances, and has lower outer iteration and line
search steps than that of the MADMM. The computational results of our MIALM and other methods on
objective value and time are reported in Table 3. The performance profile of MIALM and other methods
on criteria ‘relative-obj’ and ‘CPU time’ are displayed in Fig. 4, where ‘relative-obj’ is defined as

relative-obj := ef/IFmax! (6.9)

where F is the objective value obtained by each method, F,,, denotes the largest objective value of
all methods. The results show that, for these settings of SPCA, our MIALM has the better performance
compared to other methods.
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Fi1G. 5. The performance profiles of MIALM and other algorithms on SPCA with real data.

The results in setting 2. We test the performance of all methods for solving problem (6.8) induced
by different u and r, where r € {10,20} and u € {0.4,0.6}. The computational results of our MIALM
and other methods on objective value and time are reported in Table 5. Table 6 reports the detailed results
of MIALM and MADMM on SPCA problem with real data. One can easily conclude from Table 6 that,
for these settings of SPCA problems with real data, our MIALM performs better than MADMM on
most instances. The performance profile of MIALM and other methods on criteria ‘relative-obj’ and
‘CPU time’ are displayed in Fig. 5, where ‘relative-obj’ is defined by (6.9). All the results show that, for
the SPCA problem with this settings, our MIALM compares favorably to the other methods.

7. Conclusions

In this paper, we proposed an MIALM for nonsmooth composite minimization problem on Riemannian
manifold. Based on the Moreau envelope, the iteration subproblem is reformulated to a smooth
Riemannian manifold minimization problem and a proximal operator, and at each iteration in our
method, one only needs an inexact solution of the smooth Riemannian manifold minimization problem.
The convergence to critical point of the proposed method is established under some mild assumptions.
Numerical experiments show that our method is competitive to some existing state-of-the-art methods.
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