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A Discriminative Projection and Representation-Based Classification Framework
for Face Recognition\ast 

Kangkang Deng\dagger , Zheng Peng\ddagger , and Wenxing Zhu\S 

Abstract. The sparse representation-based classifier (SRC) has been developed and verified as having great
potential for real-world face recognition. In this paper, we propose a discriminative projection and
representation-based classification (DPRC) method to enhance the discriminant ability of the SRC.
The proposed method first obtains a discriminative projection matrix not only maximizing the ratio
of the distance within interclass over the distance within intraclass, but also minimizing the linear
approximation error within intraclass. Then it maps the original data onto the discriminative space,
and adopts an SRC method to obtain the final solution. An inexact augmented Lagrangian method of
multiplier is proposed for finding the optimal representation vector in our framework, and a proximal
alternating minimization method is adopted to the iteration subproblems of the proposed method.
The proposed method is proven to have the subsequence convergence property. Experimental results
on Yale, ORL, and AR face image databases demonstrate that, compared with some existing feature
extraction methods based on the SRC, the proposed DPRC method is more efficient.

Key words. face recognition, sparse representation, discriminative projection, augmented Lagrangian method
of multipliers, subsequence convergence
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1. Introduction and related works. Face recognition has aroused considerable research
interests in pattern recognition and computer vision areas during the last few decades [1,
25], and numerous methods were developed. Among these methods, representation-based
classification (RC) has drawn intensive interests because of the noticeable performance.

The RC method proposed by Wright et al. [26] is indeed a sparse representation classifica-
tion (SRC). Given a testing image, the SRC obtains a sparse coding over the whole training
image set, then a classification method is performed by checking which class yields the least
coding error. Specifically, the SRC utilizes the training samples of all classes to sparsely repre-
sent a testing sample by imposing \ell 1-regularization. Zhang, Yang, and Feng [31] put forward
a collaborative RC (CRC) by introducing an \ell 2-regularization instead of the \ell 1-regularization
for efficient face recognition. Other regularization RC methods, including block sparse RC
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(BSRC) [7], joint sparse RC [21], low rank RC [12], were also presented in literature. To
improve the robustness of the SRC to noised circumstances, Qian et al. [17] proposed a novel
robust low-rank regularized regression method, and for the other robust RC methods, the
interested readers are also referred to [30, 7, 22] and [27]. In [24], the authors developed a
unified framework termed atomic RC for some popular RC methods.

A key assumption of the RC methods is that, the training samples of a single class do lie
in a subspace. However, this assumption is invalid if the samples in each class are insufficient
or ill-conditioned. Such cases are common in practice, e.g., the samples in each class are few,
or the samples within the same class do not have a good linear representation, or the samples
within the different classes do not have a good exclusive effect in the linear representation
view. To handle those cases, in the extended SRC (ESRC), Deng, Hu, and Guo [6] assumed
that a testing image equals a prototype image plus some (linear) variations, and adopted an
auxiliary intraclass variant dictionary to represent the possible variation between the training
samples and testing image.

Many discriminative representation methods have also been proposed to achieve better
performance for face recognition [29, 32, 9]. Yang et al. [28] proposed a sparse representation
classifier steered discriminative projection method, which maximizes the ratio of between-
class reconstruction residual to within-class reconstruction residual in the projected space.
Linear discriminant regression classification (LDRC) [10] is a discriminant regression analysis
method which embeds the Fisher criterion into the linear regression classification [16]. Fang
et al. [8] combined the feature learning with classification to learn a robust latent subspace. A
disadvantage of these mentioned methods is that, they did not full capture the discriminative
information.

In this paper, we propose a discriminative projection and RC framework by taking full
advantage of discriminant information. The proposed framework is divided into two stages:
learning a discriminative projection and performing RC in the projection space. Our main
contributions can be summarized as follows:

1. In the first stage, we obtain a latent representation by learning a discriminative projec-
tion, which can improve the class separability and the degree of linear reconstruction
intraclass. In the second stage, we perform the SRC method [25] in the projection
space. Our framework is compatible with the existing RC methods, and the SRC
method in the second stage can be replaced by any other RC methods.

2. We propose an inexact augmented Lagrangian method of multipliers (ALM) to solve
the optimization model in the first stage, and prove that the proposed inexact ALM
algorithm has a subsequence convergence property.

3. We perform a lot of experiment on Yale, ORL, and AR face image databases, and
demonstrate that the proposed discriminative projection and RC (DPRC) method is
more efficient compared with some existing RC methods.

1.1. Notations. In the rest of this paper, for any matrix X \in \BbbR m\times n, we denote the Frobe-
nius norm by \| X\| F , and define \| X\| \infty := max1\leq i\leq m,1\leq j\leq n\{ | Xi,j | \} . Let diag(Z) be a vector
where the ith entry is Zii, and Diag([Z1, . . . , Zm]) be a block diagonal matrix, where the ith
block matrix is Zi. Let f : \BbbR d \rightarrow ( - \infty ,+\infty ] be a proper and lower semicontinuous function,

the Fr\'echet subdifferential of f is defined as \^\partial f(x) := \{ u| limy \not =x infy\rightarrow x
f(y) - f(x) - <u,y - x>

\| y - x\| \geq 0\} ,
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1448 KANGKANG DENG, ZHENG PENG, AND WENXING ZHU

and the limiting subdifferential of f is defined as \partial f(x) := \{ u \in \BbbR d| \exists xk \rightarrow x, f(xk) \rightarrow 
f(x) and uk \in \^\partial f(xk) \rightarrow u as k \rightarrow \infty \} . Other notations will be defined when they occur.

1.2. Organization. The rest of this paper is arranged as follows. In section 2 we give a
brief review on the RC methods. Then, section 3 presents the DPRC framework. In section 4,
an inexact ALM algorithm is proposed to find the projection matrix in our framework, and we
prove that the inexact ALM has a subsequence convergence property. Section 5 provides some
numerical results to show that, compared with some state-of-the-art methods, our framework
is more efficient. Section 6 concludes this paper with some final remarks.

2. Representation-based classification. Give a training set X = [X1, . . . , Xm] \in \BbbR r\times n,
where the submatrix Xi \in \BbbR r\times ni represents the training samples in class i, and n =

\sum m
i=1 ni

is the sample size, m is the number of classes in the training sample set. Assume that the
noise-free testing sample y will approximately lie in the linear span of the training samples
with the same class label of y. Then, the RC finds the optimal representation vector via

(2.1)

\Biggl\{ 
c\ast = arg min

c\in \BbbR n
\Omega (c)

s.t. y = Xc,

where \Omega (c) is a regularization function. However, data may be noised in real-world applica-
tions. In that case, it is impossible to exactly express y as a sparse linear superposition of the
training samples. For noisy data y, we consider the model

c\ast = arg min
c\in \BbbR n

\lambda \Omega (c) + \| y  - Xc\| 22,(2.2)

where \lambda is a regularization parameter. Different methods may use different regularization
functions. In SRC [26], the authors considered an \ell 1 sparse RC model, i.e., \Omega (c) = \| c\| 1. The
BSRC [7] generalized SRC and took into account a block structure of training samples, and
obtained a group sparse representation, where the samples with the same class label form a
group. In this case, \Omega (c) =

\sum m
i=1 \| c\scrI i\| , where \scrI i is the index set of class i. If \Omega (c) = \| c\| 22,

the model (2.2) reduces to the CRC [31].
For a testing sample y, we first get the representation vector c\ast via model (2.1) for clean

data, or model (2.2) for noisy data. Then, we calculate the class-dependent residual for each
class rk(y) = \| y  - X\delta k(c\ast )\| 2, k = 1, . . . ,m, where \delta k(c\ast ) \in Rn is a new vector whose nonzero
entries are the components of c\ast associated with the class k. The testing sample y is assigned
to the class corresponding to the minimal residual.

3. The DRPC framework. In this section, we propose a DPRC framework for face recog-
nition. The proposed framework has two stages. In the first stage, we learn a discriminative
projection matrix that enhances simultaneously the class separability and the degree of linear
reconstruction intraclass. In the second stage, the samples are projected into the discrimi-
native space via the projection matrix learned in the first stage, and then the SRC [26] is
adopted to the latent samples in the discriminative projection space. Figure 1 gives a concep-
tual illustration of discriminative projection.
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Discriminative 
projection

Figure 1. Conceptual illustration for discriminative projection. (a) different colors denote different subjects.
The left side is the image set in origin space, the right side is the image set in discriminative projection space.
(b) An illustration in matrix form.

3.1. Learning a discriminative projection. Given a training set X = [X1, . . . , Xm] \in 
\BbbR r\times n, our goal is to infer a latent sample space H = [H1, . . . ,Hm] \in \BbbR d\times n which preserves the
better performance for some classical RC methods. Specifically, we seek a projection matrix
P \in \BbbR r\times d such that P TP = Id and P TX = H, where P TP = Id is the property of the
projection matrix; P TX = H means that H is a projection of X in the projection space via
P . For this purpose, we have

(3.1)

\Biggl\{ 
min
P,H,Z

\theta (H,Z) + \phi (P )

s.t. P TP = Id, P
TX = H, diag(Z) = 0,

where Z is the reconstruction coefficient matrix for the intraclass samples of data matrix H
in the latent space, and \theta (H,Z) is the corresponding reconstruction residual, \phi (P ) is a merit
function for the class separability.

The linear reconstruction residual \theta (H,Z) enforces that the intraclass samples in the latent
space have a better linear reconstruction. Hence, for each Hi (i = 1, 2, . . . ,m) we need to
minimize

\| Hi  - HiZi\| 2F ,

where Zi satisfying diag(Zi) = 0 is the regression coefficient of the ith sample Hi. To avoid
the trivial solution, a regularization term is needed. By the regularization we obtain

\| Hi  - HiZi\| 2F + \eta \| Zi\| 2F .

In summary, the regularized linear reconstruction residual \theta (H,Z) has the form

\theta (H,Z) =
m\sum 
i=1

\{ \| Hi  - HiZi\| 2F + \eta \| Zi\| 2F \} .
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1450 KANGKANG DENG, ZHENG PENG, AND WENXING ZHU

Let Z = Diag([Z1, . . . , Zm]). Then, \theta (H,Z) has a compact form:

(3.2) \theta (H,Z) = \| H  - HZ\| 2F + \eta \| Z\| 2F ,

where Z satisfies diag(Z) = 0.
The role of \phi (P ) is to push the samples in different classes far away from each other,

and pull those within the same class closeer to each other. Similarly to linear discriminant
analysis [3], we give the between-class scatter matrix Sb and the within-class scatter matrix
Sw as follows:

(3.3)

\Biggl\{ 
Sb =

\sum m
i=1 ni(\mu 

i  - \mu )(\mu i  - \mu )T ,

Sw =
\sum m

i=1

\sum ni
j=1(x

i
j  - \mu i)(xij  - \mu i)T ,

where xij is the jth sample in class i, \mu i is the sample mean of class i, and \mu is the total sample
mean. By (3.3), we have

(3.4) \phi (P ) = P T (Sb  - \nu Sw)P,

where \nu > 0 is a trade-off parameter.
In summary, the optimization model for finding the discriminative projection matrix P

has the form

(3.5)

\Biggl\{ 
min
H,P,Z

\| H  - HZ\| 2F + \eta \| Z\| 2F + P T (Sb  - \nu Sw)P

s.t. P TP = Id, P
TX = H,diag(Z) = 0.

3.2. Performing the SRC method in the projection space. After obtaining the latent
sample representation H = P TX, we adopt the SRC [26] in the latent sample space. Specifi-
cally, given an unlabeled testing sample y, we first obtain the latent representation u = P T y.
Then, we obtain the representation vector c\ast in the latent space via

(3.6) c\ast = arg min
c\in \BbbR n

\lambda \| c\| 1 + \| u - Hc\| 22,

and compute the residual rk(u) = \| u  - H\delta k(c\ast )\| 22. Finally, we predict the class of y via
identity(y) = arg mink\in \scrK rk(z). Of course, we can also apply the other representation-based
methods in this stage, and the SRC method is a better choice.

Algorithm 3.1 summarizes the proposed framework. First, we obtain a discriminative
projection matrix P by solving problem (3.5). Then, the training samples and testing samples
are projected onto a low-dimensional space (the discriminative space) via projection matrix
P , and get their low-dimensional representations. Finally, the SRC [26] is adopted to the
resulting low-dimensional representation data, and gives the classification result.

4. Optimization method and convergence. In this section, an inexact ALM algorithm is
proposed to solve problem (3.5) for getting discriminative projection matrix P , and a proximal
alternating minimization (PAM) method [2] is used to solve the subproblem in inexact ALM.
The convergence of the proposed inexact ALM is established.
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Algorithm 3.1 The discriminative projection and sparse RC framework, DPRC.

Input: A training set X = [X1, . . . , Xm] \in \BbbR r\times n with m classes, an unlabeled testing sample
y \in \BbbR n, regularization parameter \lambda > 0.
Output: Class-label of testing sample y

s1. Normalize the columns of X and y such that they have unit \ell 2-norm.
s2. Obtain matrices P and H via solving problem (3.5).
s3. Compute the representation of training samples and testing sample in the latent space

H = P TX,u = P T y.

s4. Obtain the representation vector c\ast for u with respect to H in the latent space, where

c\ast = arg min
c\in \BbbR n

\lambda \| c\| 1 + \| u - Hc\| 22.

s5. Compute residual

rk(u) = \| u - H\delta k(c\ast )\| 22, k \in \scrK := \{ 1, . . . ,m\} ,

where \delta k(c\ast ) \in Rn is a vector whose nonzero entries are those of the components of c\ast 

associated with class k.
s6. Predict the class of y via identity(y) = arg mink\in \scrK rk(z).

4.1. The inexact ALM of multipliers. For simplicity, let

\Phi (H,Z, P ) := \| H  - HZ\| 2F + \eta \| Z\| 2F + P T (Sb  - \nu Sw)P,

and \delta \scrM be an indicator function defined by

\delta \scrM (x) =

\biggl\{ 
0 if x \in \scrM ,

+\infty otherwise,

where \scrM = \{ J \in \BbbR r\times d| JTJ = Id\} is a Stiefel manifold. Let \scrW = \{ Z \in \BbbR n\times n| \scrA Z = 0\} , where
\scrA Z = diag(Z) is a linear operator. By introducing an auxiliary variable with constraint
J = P , problem (3.5) can be rewritten as

(4.1)

\biggl\{ 
min \Phi (H,Z, P ) + \delta \scrM (J) + \delta \scrW (Z)
s.t. P TX = H, P = J.

The augmented Lagrangian function associated with (4.1) is\widetilde L\rho (H,Z, P, J ; \Lambda 1,\Lambda 2) = \Phi (H,Z, P ) + \delta \scrM (J) + \delta \scrW (Z) +
\bigl\langle 
\Lambda 1, P

TX  - H
\bigr\rangle 

+
\rho 

2
\| P TX  - H\| 2F + \langle \Lambda 2, P  - J\rangle +

\rho 

2
\| P  - J\| 2F ,

(4.2)

where \Lambda 1 \in \BbbR d\times n,\Lambda 2 \in \BbbR r\times d are multipliers, and \rho is a penalty parameter. Inspired by [33],
we consider the scaled form

(4.3) L\rho (H,Z, P, J ; \Lambda 1,\Lambda 2) =
1

\rho 
\~L\rho (H,Z, P, J ; \Lambda 1,\Lambda 2).
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Then, at the kth iteration of the proposed inexact ALM, the jointed variable (H,Z, P, J) is
first updated by fixing multipliers (\Lambda 1,\Lambda 2) and penalty parameter \rho , to obtain an approximate
solution (Hk, Zk, P k, Jk) with tolerance \epsilon k. For this purpose, we solve the subproblem

(4.4) (Hk, Zk, P k, Jk) := arg min
JT J=I

L\rho k - 1
(H,Z, P, J ; \Lambda k - 1

1 ,\Lambda k - 1
2 )

by an iteration method with a stopping criterion in the following:

(4.5) Ak \in \partial L\rho k - 1
(Hk, Zk, P k, Jk; \Lambda k - 1

1 ,\Lambda k - 1
2 ) and \| Ak\| \infty \leq \epsilon k - 1

\rho k - 1
,

where \epsilon k \downarrow 0 as k \rightarrow \infty . Then, we update the multipliers \Lambda 1,\Lambda 2 and penalty parameter \rho by
a suitable mechanism. The outline of the inexact ALM is summarized in Algorithm 4.1.

Algorithm 4.1 The inexact ALM of multipliers for (4.1).

Input: Training sample matrix X = [X1, . . . , Xm] \in \BbbR r\times n, the dimensions of latent space d.
Output: Projection matrix P \in \BbbR r\times d.

Initialization: Given \{ Z0, P 0, H0, J0; \Lambda 0
1,\Lambda 

0
2\} . Let \{ \epsilon k\} k\in \BbbN \downarrow 0, \tau \in (0, 1), \mu > 1, \rho 0 > 0, \varepsilon >

0,  - \infty < \=\Lambda i,min \leq \=\Lambda i,max < +\infty , i = 1, 2.

While k \geq 1 do
s1. Obtain (Hk, Zk, P k, Jk) by solving subproblem (4.4) with termination criterion (4.5).
s2. Update the multipliers by

\Lambda k
1 = \=\Lambda k - 1

1 + \rho k - 1 \cdot ((P k)TX  - Hk),

\Lambda k
2 = \=\Lambda k - 1

2 + \rho k - 1 \cdot (P k  - Jk),

where \=\Lambda k - 1
i is a projection of \Lambda k - 1

i on the set \{ \Lambda i| \=\Lambda i,min \leq \Lambda i \leq \=\Lambda i,max\} , i = 1, 2.
s3. Update the penalty parameter by

\rho k =

\biggl\{ 
\rho k - 1 if \| Rk

i \| \infty \leq \tau \| Rk - 1
i \| \infty , i = 1, 2,

\mu \rho k - 1 otherwise,

where Rk
1 := (P k)TX  - Hk, Rk

2 := P k  - Jk.
s4. If

max
i=1,2

\{ \| Rk
i \| \infty \} \leq \varepsilon ,

then stop. Otherwise, let k := k + 1 and goto s1.
Return: P := P k

4.2. The PAM method for subproblem (4.4). The main computational cost of Algorithm
4.1 is in step s1, which finds an approximating minimizer of L\rho k - 1

with respect to (H,Z, P, J)

for fixed (\Lambda k - 1
1 ,\Lambda k - 1

2 ). We achieve it by adopting a PAM method. Let

Gk(H,Z, P, J) =
1

\rho k - 1
\Phi (H,Z, P ) +

1

\rho k - 1

\Bigl\langle 
\Lambda k - 1
1 , P TX  - H

\Bigr\rangle 
+

1

2
\| P TX  - H\| 2F

+
1

\rho k - 1

\Bigl\langle 
\Lambda k - 1
2 , P  - J

\Bigr\rangle 
+

1

2
\| P  - J\| 2F ,
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Fk(J) = 1
\rho k - 1

\delta \scrM (J) and Qk(Z) = 1
\rho k - 1

\delta \scrW (Z). By (4.2) and (4.3) we have

L\rho k - 1
(H,Z, P, J ; \Lambda k - 1

1 ,\Lambda k - 1
2 ) = Gk(H,Z, P, J) + Fk(J) +Qk(Z).

Then, at the jth iteration of the PAM method for minimizing L\rho k - 1
(H,Z, P, J ; \Lambda k - 1

1 ,\Lambda k - 1
2 ),

the following minimization problems are solved:

(4.6)

\left\{                   

Hk,j = arg min
H

Gk(H,Zk,j - 1, P k,j - 1, Jk,j - 1) +
sk,j - 1
1
2 \| H  - Hk,j - 1\| 2F ,

Zk,j = arg min
Z

Gk(Hk,j , Z, P k,j - 1, Jk,j - 1) +Qk(Z) +
sk,j - 1
2
2 \| Z  - Zk,j - 1\| 2F ,

P k,j = arg min
P

Gk(Hk,j , Zk,j , P, Jk,j - 1) +
sk,j - 1
3
2 \| P  - P k,j - 1\| 2F ,

Jk,j = arg min
JT J=Id

Gk(Hk,j , Zk,j , P k,j , J) + Fk(J)+
sk,j - 1
4
2 \| J - Jk,j - 1\| 2F .

In iteration subproblems (4.6), the variables H,Z, P can be updated by one iteration of a
gradient descent method. The subproblem with regards to J can be reformulated to

Jk,j = arg min
JT J=Id

\Biggl\{ 
1

\rho k - 1

\Bigl\langle 
\Lambda k - 1
2 , P k,j  - J

\Bigr\rangle 
+

1

2
\| P k,j  - J\| 2F +

sk,j - 1
4

2
\| J  - Jk,j - 1\| 2F

\Biggr\} 
,

and it has a closed solution in the analytic form via a projection operator on the orthogonal
constraint JTJ = Id. Algorithm 4.2 summarizes the PAM method for problem (4.4).

Remark 4.1. In Algorithm 4.2, the initial point is given by

(Hk,0, Zk,0, P k,0, Jk,0) = (Hk - 1, Zk - 1, P k - 1, Jk - 1)

for all k > 1. To check stoping criterion (4.5), we set Ak = [Ak,j
H , Ak,j

Z , Ak,j
P , Ak,j

J ], where

(4.7)

\left\{                           

Ak,j
H = \nabla HGk(Hk,j , Zk,j , P k,j , Jk,j)  - \nabla HGk(Hk,j , Zk,j - 1, P k,j - 1, Jk,j - 1)

+ sk,j - 1
1 (Hk,j - 1  - Hk,j),

Ak,j
Z = \nabla ZGk(Hk,j , Zk,j , P k,j , Jk,j)  - \nabla ZGk(Hk,j , Zk,j , P k,j - 1, Jk,j - 1)

+ sk,j - 1
2 (Zk,j - 1  - Zk,j),

Ak,j
P = \nabla PGk(Hk,j , Zk,j , P k,j , Jk,j)  - \nabla PGk(Hk,j , Zk,j , P k,j , Jk,j - 1)

+ sk,j - 1
3 (P k,j - 1  - P k,j),

Ak,j
J = sk,j - 1

4 (Jk,j - 1  - Jk,j).

4.3. The convergence. Consider a general nonconvex and nonsmooth problem of the
form

(4.9) min
x,y

f(x) + g(y) + h(x, y),

where f and g are extended-real-valued (not necessary convex or smooth) functions, and h
is a smooth (possibly nonconvex) function. Attouch, Bolte, and Svaiter [2] proposed a PAM
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1454 KANGKANG DENG, ZHENG PENG, AND WENXING ZHU

Algorithm 4.2 The PAM for subproblem (4.4).

Input: (Hk,0, Zk,0, P k,0, Jk,0), \epsilon k - 1, \rho k - 1.
Output: (Hk, Zk, P k, Jk)

s1. Let j = 0.
s2. Compute Ak,j by (4.7).
s3. If

(4.8) \| Ak,j\| \infty \geq \epsilon k - 1/\rho k - 1,

then update (Hk,j , Zk,j , P k,j , Jk,j) via one iteration for problem (4.6).
s4. Let j := j + 1, go to s2.

Return: (Hk, Zk, P k, Jk) = (Hk,j , Zk,j , P k,j , Jk,j)

method for problem (4.9). Given a pair (xk, yk), the PAM method updates x and y alternately
by

(4.10)

\left\{     
xk+1 \in arg minx f(x) + h(x, yk) +

ck
2
\| x - xk\| 2,

yk+1 \in arg miny g(y) + h(xk+1, y) +
dk
2
\| y  - yk\| 2.

Under some suitable assumptions, Attouch, Bolte, and Svaiter [2] proved that each bounded
sequence generated by the PAM method converges to a critical point of problem (4.9). The
convergence still holds for the extension of the PAM method to solve more general settings in-
volving p > 2 blocks. Specifically, in the case that the objective function has p-blocks variables
of the form

(4.11) \psi (x1, . . . , xp) := h(x1, . . . , xp) +

p\sum 
i=1

fi(xi) , xi \in \BbbR ni ,

where h : \BbbR n1 \times \cdot \cdot \cdot \times \BbbR np \rightarrow \BbbR is continuously differentiable, each fi :: \BbbR n1 \rightarrow \BbbR (i = 1, . . . , p)
is a proper and low-semicontinuous function, the PAM method solves at each iteration the p
subproblems

(4.12) xk+1
i \in arg min

xi

\biggl\{ 
h(xk+1

1 , . . . , xk+1
i - 1 , xi, x

k
i , . . . , x

k
p) + fi(xi) +

\rho ki
2
\| xi  - xki \| 2

\biggr\} 
for i = 1, . . . , p.

For the convergence of the PAM method (4.12), the Kurdyka--\Lojasiewicz property plays
a critical role.

Definition 4.2 (see Kurdyka--\Lojasiewicz property [19]). Let \sigma : \BbbR d \rightarrow ( - \infty ,+\infty ] be proper
and lower semicontinuous. The function \sigma is said to have the Kurdyka--\Lojasiewicz (K-L)
property at \=u \in dom(\partial \sigma ) := \{ u \in \BbbR d| \partial \sigma (u) \not = \emptyset \} , if there exist \eta \in [0,+\infty ), a neighborhood U
of \=u, and a concave function \varphi : [0, \eta ) \rightarrow \BbbR + satisfies \varphi (0) = 0, \varphi is continuously differentiable
on (0, \eta ) and continuous at 0, and \varphi \prime (s) > 0 for all s \in (0, \eta ), such that for all

(4.13) x \in U \cap \{ x| \sigma (\=x) < \sigma (x) < \sigma (\=x) + \eta \} 
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the following inequality holds:

(4.14) \varphi \prime 
\Bigl( 
\sigma (x)  - \sigma (\=x)dist(0, \partial \sigma (x))

\Bigr) 
\geq 1.

If \sigma satisfies the K-L property at each point of dom(\partial \sigma ), then \sigma is called a K-L function.

To guarantee global convergence of the PAM method, we need the following assumptions.

Assumption 4.1.
(i) For each i = 1, . . . , p, fi is a proper and low-semicontinuous function, and h \in C1 has

locally Lipschitz continuous gradient.
(ii) the sequence \{ \rho ki : k \in \BbbN \} i=1,...,p is bounded, and inf\BbbR n1\times \cdot \cdot \cdot \times \BbbR np f >  - \infty .

Under Assumption 4.1, the convergence of the PAM method is established in [2].

Theorem 4.3 (see [2, Theorem 6.2]). Let \{ zk := (xk1, . . . , x
k
p)\} k\in \BbbN be a bounded sequence

generated by the PAM method (4.12), and suppose that Assumption 4.1 holds.Then we have
(i) the sequence \{ zk\} k\in \BbbN has finite length, i.e.,

\infty \sum 
i=1

\| zk+1  - zk\| <\infty ;

(ii) if \psi is a K-L function, then the sequence \{ zk\} k\in \BbbN converges to a critical point of \psi .

The following assertions will be utilized in the convergence analysis.

Proposition 4.4.
(1) For the limiting subdifferential of indicator function \delta X , where X is a closed set, we

have [15]

\partial \delta X (x) = \scrN X (x),

where NX (x) is the normal cone of X at x.
(2) Particularly, let \scrA : \BbbR r\times n \rightarrow \BbbR d\times n be a linear mapping. If X1 := \{ X| \scrA X = 0\} and

X2 := \{ X| XTX = I\} , then

\scrN X1(X) = \{ \scrA \ast Y | Y \in \BbbR d\times n\} ,
\scrN X2(X) = \{ XS| S = ST \} .

(4.15)

Essentially, Algorithm 4.2 is the PAM method (4.12) adopted to iteration subproblem
(4.4) and, correspondingly,

h(H,Z, P, J) = Gk(H,Z, P, J), f1(J) = Fk(J), f2(Z) = Qk(Z).

Hence, similarly to the convergence analysis in [5], the sequence generated by Algorithm 4.2
is strongly convergent.

Theorem 4.5. Let \{ (Hk,j , Zk,j , P k,j , Jk,j)\} j\in \BbbN be a sequence generated by Algorithm 4.2

for fixed k \geq 1, and choose the parameters sk,ji (i = 1, . . . , 4) such that \{ sk,ji : j \in \BbbN \} is
bounded. Then we have the following.
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(1) Ak defined by (4.7) satisfies that for all j \in \BbbN ,

Ak \in \partial L\rho k - 1
(Hk,j , Zk,j , P k,j , Jk,j ; \Lambda k - 1

1 ,\Lambda k - 1
2 )

and
\| Ak\| \infty \rightarrow 0 as j \rightarrow \infty .

(2) The sequence \{ W k,j := (Hk,j , Zk,j , P k,j , Jk,j)\} j\in \BbbN has finite length, i.e.,

(4.16)
\infty \sum 
j=1

\bigm\| \bigm\| \bigm\| (Hk,j+1, Zk,j+1, P k,j+1, Jk,j+1)  - (Hk,j , Zk,j , P k,j , Jk,j)
\bigm\| \bigm\| \bigm\| \leq \infty .

(3) Any accumulation point of the sequence \{ W k,j\} j\in \BbbN , denoted by W k,\ast , is a critical point
of function L\rho k - 1

(H,Z, P, J ; \Lambda k - 1
1 ,\Lambda k - 1

2 ).

Proof. For simplicity, let W := (H,Z, P, J) and Lk(W ) := L\rho k - 1
(W ; \Lambda k - 1

1 ,\Lambda k - 1
2 ).

(i) Given W k,j - 1, by the first-order optimality condition for the subproblems of the PAM
method we have\left\{         

\nabla HGk(Hk,j , Zk,j - 1, P k,j - 1, Jk,j - 1) + sk,j1 (Hk,j  - Hk,j - 1) = 0,

\omega k,j + \nabla ZGk(Hk,j , Zk,j , P k,j - 1, Jk,j - 1) + sk,j2 (Zk,j  - Zk,j - 1) = 0,

\nabla PGk(Hk,j , Zk,j , P k,j , Jk,j - 1) + sk,j3 (P k,j  - P k,j - 1) = 0,

\nu k,j  - \Lambda k - 1
2 /\rho k - 1 + (P k,j  - Jk,j) + sk,j4 (Jk,j  - Jk,j - 1) = 0,

where \omega k,j \in \partial Qk(Zk,j) and \nu k,j \in \partial Fk(Jk,j). It follows that\left\{         
Ak,j

H = \nabla HGk(Hk,j , Zk,j , P k,j , Jk,j) \in \partial HLk(W k,j),

Ak,j
Z = \omega k,j + \nabla ZGk(Hk,j , Zk,j , P k,j , Jk,j) \in \partial ZLk(W k,j),

Ak,j
P = \nabla PGk(Hk,j , Zk,j , P k,j , Jk,j) \in \partial PLk(W k,j),

Ak,j
J = \nu k,j + \nabla JGk(Hk,j , Zk,j , P k,j , Jk,j) \in \partial JLk(W k,j).

By the subdifferentiability [15], we get

\partial Lk(W ) = \partial HLk(W k,j) \times \partial ZLk(W k,j) \times \partial PLk(W k,j) \times \partial JLk(W k,j),

which implies that
Ak \in \partial Lk(W k,j).

Now we need only to verify that, for each fixed k \in \BbbN , \| Ak\| \infty \rightarrow 0 as j \rightarrow \infty . We
achieve this by showing that the function Lk(W ) satisfies the conditions of Theorem
4.3, hence it is available.
First, Lk(W ) satisfies Assumption 4.1. To see this, for given \Lambda k - 1 and \rho k - 1, one can
check that

(a) Fk(J) is the indicator function of the Stiefel manifold, which is a proper and
low-semicontinuous function satisfying inf Fk(J) >  - \infty , Qk(J) is the indicator
function of the convex set (linear constraint set), which also is a proper and low-
semicontinuous function satisfying inf Fk(J) >  - \infty , and Gk is a C1 function.
Hence, Assumption 4.1(i) holds;
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(b) since Gk is a quadratic function with respect to (H,Z, P, J), and the sequences

\{ sk,ji : j \in \BbbN \} are bounded and fixed k \geq 1, where i = 1, 2, 3, 4. Assumption
4.1(ii) holds.

Second, for all index k \geq 1, the sequence \{ W k,j\} j\in \BbbN is bounded. Otherwise, suppose
by contradiction that limj\rightarrow \infty \| W k,j\| \infty = +\infty . Then, on the one hand, since \{ \rho k\} k\in \BbbN 
is nondecreasing, and Lk(W ) is a coercive function, it holds that limj\rightarrow \infty Lk(W k,j) =
+\infty ; on the other hand, by [19, Lemma 3], it follows that

Lk(W k,j) \leq Lk(W k,j - 1) \leq Lk(W k,0)

which leads to a contradiction.
(ii) Follows from (i), \{ W k,j\} j\in \BbbN is bounded. Recall that

Lk(W ) = \Phi (H,Z, P ) + \delta \scrM (J) + \delta \scrW (Z) +
\Bigl\langle 

\Lambda k - 1
1 , P TX  - H

\Bigr\rangle 
+
\rho k - 1

2
\| P TX  - H\| 2F +

\Bigl\langle 
\Lambda k - 1
2 , P  - J

\Bigr\rangle 
+
\rho k - 1

2
\| P  - J\| 2F .

Since polynomial functions are semialgebraic, and a finite sum of semialgebraic func-
tions is also a semialgebraic function, we have that Lk(W ) is a semialgebraic function.
In summary, all conditions of Theorem 4.3 are satisfied. The assertion of Theorem 4.5
follows directly from Theorem 4.3 and the proof is completed.

Lemma 4.6. Suppose that (H\ast , Z\ast , P \ast , J\ast ) is a local minimizer of problem (4.1). Then,
there exist (\Lambda \ast 

1,\Lambda 
\ast 
2,\Lambda 

\ast 
3) with proper dimension such that

(4.17)

\left(    
(\partial H\Phi (H\ast , Z\ast , P \ast ))T

\partial \delta \scrW (Z\ast ) + \partial Z\Phi (H\ast , Z\ast , P \ast )
\partial P\Phi (H\ast , Z\ast , P \ast )

0

\right)    +

\left(    
 - I 0 0
0 0 0
X I 0
0  - I 2J\ast 

\right)    
\left(  (\Lambda \ast 

1)
T

\Lambda \ast 
2

\Lambda \ast 
3

\right)  = 0

and
(P \ast )TX  - H\ast = 0, P \ast = J\ast , (J\ast )TJ\ast = Id.

Correspondingly, we have

(4.18)

\left(  (\partial H\Phi (H\ast , Z\ast , P \ast ))T

\partial \delta \scrW (Z\ast ) + \partial Z\Phi (H\ast , Z\ast , P \ast )
\partial P\Phi (H\ast , Z\ast , P \ast )

\right)  +

\left(   - I 0
0 0
X 2P \ast 

\right)  \biggl( 
(\Lambda \ast 

1)
T

\Lambda \ast 
3

\biggr) 
= 0.

Proof. Since (H\ast , Z\ast , P \ast , J\ast ) is a local minimizer, it is feasible. It is clear that

(4.19) (P \ast )TX  - H\ast = 0, P \ast = J\ast , (J\ast )TJ\ast = Id.

For convenience, let W := (HT ;Z;P ; J) and

g(W ) =

\biggl( 
 - I 0 XT 0
0 0 I  - I

\biggr) 
W.
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Letting \Omega = \{ W | g(W ) = 0\} , problem (4.1) is equivalent to

(4.20) min
W

\Phi (H,Z, P ) + \delta \scrM (J) + \delta \Omega (W ) + \delta \scrW (Z).

Hence, by the generalized Fermat's rule and subdifferentiability property, we get

0 \in 

\left(    
(\partial H\Phi (H\ast , Z\ast , P \ast ))T

\partial Z\Phi (H\ast , Z\ast , P \ast )
\partial P\Phi (H\ast , Z\ast , P \ast )

\partial J\delta \scrM (J\ast )

\right)    + \partial \delta \Omega (W \ast ) + \partial \delta \scrW (Z\ast ).

It follows from (4.15) that

(4.21) \partial \delta \Omega (W \ast ) = \scrN \Omega (W \ast ) =

\left\{       
\left(    
 - I 0
0 0
X I
0  - I

\right)    \biggl( 
\Lambda T
1

\Lambda 2

\biggr) \bigm| \bigm| \bigm| \Lambda 1 \in \BbbR d\times n,\Lambda 2 \in \BbbR r\times n

\right\}       
and

(4.22) \partial J\delta \scrM (J\ast ) = \scrN \scrM (J\ast ) = \{ J\ast S| S = ST \} .

Hence, there are \Lambda \ast 
1,\Lambda 

\ast 
2, and \Lambda \ast 

3 \in \{ S| S = ST \} such that

0 \in 

\left(    
(\partial H\Phi (H\ast , Z\ast , P \ast ))T

\partial \delta \scrW (Z\ast ) + \partial Z\Phi (H\ast , Z\ast , P \ast )
\partial P\Phi (H\ast , Z\ast , P \ast )

2J\ast \Lambda \ast 
3

\right)    +

\left(    
 - I 0
0 0
X I
0  - I

\right)    \biggl( 
(\Lambda \ast 

1)
T

\Lambda \ast 
2

\biggr) 

=

\left(    
(\partial H\Phi (H\ast , Z\ast , P \ast ))T

\partial \delta \scrW (Z\ast ) + \partial Z\Phi (H\ast , Z\ast , P \ast )
\partial P\Phi (H\ast , Z\ast , P \ast )

0

\right)    +

\left(    
 - I 0 0
0 0 0
X I 0
0  - I 2J\ast 

\right)    
\left(  (\Lambda \ast 

1)
T

\Lambda \ast 
2

\Lambda \ast 
3

\right)  
(4.23)

which proves (4.17). Moreover, it yields that \Lambda \ast 
2 = 2J\ast \Lambda \ast 

3. Substituting it into (4.23), we get
(4.18) and complete the proof.

By Lemma 4.6, we have the following convergence theorem.

Theorem 4.7. Suppose that Assumption 4.1 holds, and \{ (Hk, Zk, P k, Jk)\} k\in \BbbN is a sequence
generated by Algorithm 4.1. If \{ (Hk, Zk, P k, Jk)\} k\in \BbbN is bounded, then any accumulation point
of the sequence \{ (Hk, Zk, P k, Jk)\} k\in \BbbN , denoted by (H\ast , Z\ast , P \ast , J\ast ), is the first-order critical
point of problem (4.1) and, correspondingly, (H\ast , Z\ast , P \ast ) is the first-order critical point of
problem (3.5).

Proof. For any accumulation point (H\ast , Z\ast , P \ast , J\ast ) of sequence \{ (Hk, Zk, P k, Jk)\} k\in \BbbN 
generated by the proposed method, there exists a subsequence \{ (Hk, Zk, P k, Jk)\} k\in \scrK con-
verging to (H\ast , Z\ast , P \ast , J\ast ).

To prove that (H\ast , Z\ast , P \ast , J\ast ) is the first-order critical point, we first show it is feasible.
The feasibility condition (J\ast )TJ\ast = Id is trivial since (Jk)TJk = Id holds for all k \in \BbbN .
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(i) If \{ \rho k\} is bounded, then by the updating rule of \rho k in Algorithm 4.1, there exists a
k0 \in \BbbN such that

\| Rk
j \| \infty \leq \tau \| Rk - 1

j \| \infty \forall k \geq k0, j = 1, 2.

By the definition of Rk
j , it follows that

(4.24)

\biggl\{ 
\| (P k)TX  - Hk\| \infty \leq \tau \| (P k - 1)TX  - Hk - 1\| \infty ,
\| P k  - Jk\| \infty \leq \tau \| P k - 1  - Jk - 1\| \infty 

for all k \geq k0. Taking the limit as k \rightarrow \infty on both sides of (4.24), we get

(4.25)

\biggl\{ 
(P \ast )TX  - H\ast = 0,
P \ast = J\ast .

(ii) If \{ \rho k\} is unbounded, by the generalized Fermat's rule, finding a solution satisfying
the condition (4.8) is equivalent to calculating a point (Hk, Zk, P k, Jk) such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

1

\rho k - 1

\left(    
(\partial H\Phi (Hk, Zk, P k))T

\partial \delta \scrW (Zk) + \partial Z\Phi (Hk, Zk, P k)
\partial P\Phi (Hk, Zk, P k)

0

\right)    
+

\left(    
 - I 0 0
0 0 0
X I 0
0  - I 2Jk

\right)    
\left(   ((P k)TX  - Hk) + 1

\rho k - 1

\=\Lambda k - 1
1 )T

(P k  - Jk) + 1
\rho k - 1

\=\Lambda k - 1
2 )

1
\rho k - 1

\Lambda k
3

\right)   
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq \epsilon k - 1

\rho k - 1
,

where limk\rightarrow \infty \epsilon k = 0. Notice that \{ \=\Lambda k
1\} and \{ \=\Lambda k

2\} are bounded; it is easy to verify that
\{ \partial \delta \scrW (Zk)\} , \{ \partial H\Phi (Hk, Zk, P k)\} , \{ \partial Z\Phi (Hk, Zk, P k)\} , and \{ \partial P\Phi (Hk, Zk, P k)\} are also
bounded. Hence we have a convergent subsequence. Letting k \in \scrK \subset \BbbN be the index
of the convergent subsequence and k \rightarrow \infty , it follows from the above inequality that

(4.26)

\biggl( 
 - I 0
X I

\biggr) \biggl( 
((P \ast )TX  - H\ast )T

P \ast  - J\ast 

\biggr) 
= 0.

In summary, (H\ast , Z\ast , P \ast , J\ast ) is feasible.
Second we prove that there exist \Lambda \ast 

1,\Lambda 
\ast 
2, and \Lambda \ast 

3 such that (H\ast , Z\ast , P \ast , J\ast ; \Lambda \ast 
1,\Lambda 

\ast 
2,\Lambda 

\ast 
3)

satisfies the first-order critical condition (4.17).
Since \{ (Hk, Zk, P k, Jk)\} k\in \BbbN is bounded, it converges. There exists an index subset \scrK \subset \BbbN 

such that

lim
k\in \scrK ,k\rightarrow \infty 

(Hk, Zk, P k, Jk) = (H\ast , Z\ast , P \ast , J\ast ).
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Combining this with the updating rule of \Lambda k
1 and \Lambda k

2 in Algorithm 4.1, we have from (4.26)
that there exists a \xi k such that

\bigm\| \bigm\| \xi k\bigm\| \bigm\| \infty \leq \epsilon k - 1

\rho k - 1
, where

(4.27) \xi k \in 

\left(    
(\partial H\Phi (Hk, Zk, P k))T

\partial \delta \scrW (Zk) + \partial Z\Phi (Hk, Zk, P k)
\partial P\Phi (Hk, Zk, P k)

0

\right)    /\rho k - 1 +

\left(    
 - I 0 0
0 0 0
X I 0
0  - I 2Jk

\right)    
\left(  (\Lambda k

1)T

\Lambda k
2

\Lambda k
3

\right)  /\rho k - 1.

Let

\Xi k :=

\left(    
 - I 0 0
0 0 0
X I 0
0  - I 2Jk

\right)    , \Gamma k :=

\left(  (\Lambda k
1)T

\Lambda k
2

\Lambda k
3

\right)  ,

then

(4.28) \Xi k\Gamma k = \rho k - 1\xi 
k  - 

\left(    
(\partial H\Phi (Hk, Zk, P k))T

\partial \delta \scrW (Zk) + \partial Z\Phi (Hk, Zk, P k)
\partial P\Phi (Hk, Zk, P k)

0

\right)    .

Since \Xi k is full column rank, (\Xi k)T\Xi k is nonsingular. By (4.28) we get

(4.29) \Gamma k =
\Bigl( 

(\Xi k)T\Xi k
\Bigr)  - 1

(\Xi k)T

\left[    \rho k - 1\xi 
k  - 

\left(    
(\partial H\Phi (Hk, Zk, P k))T

\partial \delta \scrW (Zk) + \partial Z\Phi (Hk, Zk, P k)
\partial P\Phi (Hk, Zk, P k)

0

\right)    
\right]    .

Taking the limit on (4.29) as k \in \scrK is trending to \infty , and utilizing \| \xi k\| \infty \leq \epsilon k - 1

\rho k - 1
and

limk\rightarrow \infty \epsilon k = 0, we have

(4.30) \Gamma \ast := lim
k\in \scrI ,k\rightarrow \infty 

\Gamma k =  - 
\Bigl( 

(\Xi \ast )T\Xi \ast 
\Bigr)  - 1

(\Xi \ast )T

\left(    
(\partial H\Phi (H\ast , Z\ast , P \ast ))T

\partial \delta \scrW (Z\ast ) + \partial Z\Phi (H\ast , Z\ast , P \ast )
\partial P\Phi (H\ast , Z\ast , P \ast )

0

\right)    ,

where

\Xi \ast =

\left(    
 - I 0 0
0 0 0
X I 0
0  - I 2J\ast 

\right)    
is full column rank. It follows that\left(    

(\partial H\Phi (H\ast , Z\ast , P \ast ))T

\partial \delta \scrW (Z\ast ) + \partial Z\Phi (H\ast , Z\ast , P \ast )
\partial P\Phi (H\ast , Z\ast , P \ast )

0

\right)    +

\left(   - I 0 0
X I 0
0  - I 2J\ast 

\right)  \left(  (\Lambda \ast 
1)

T

\Lambda \ast 
2

\Lambda \ast 
3

\right)  = 0.
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Figure 2. Sample images in the Yale database with variations.

The last equation implies that, (H\ast , Z\ast , P \ast , J\ast ) is a critical point of problem (4.1). Corre-
spondingly, by Lemma 4.6, (H\ast , Z\ast , P \ast ) is a critical point of problem (3.5).

5. Experiments. In this section, we present some experimental results on publicly avail-
able databases to demonstrate the efficiency of the proposed framework. Three face database
sets, including Yale [3], ORL [20], and AR [13], are used in our experiments. For each data-
base, we adopt k-fold cross validation to obtain a training set and a testing set. The proposed
framework in this paper (DPRC) is compared with some state-of-the-art RC methods; they
are SRC [26], CRC [31], LRC [16], ESRC [6], LDRC [10], linear collaborative discriminant re-
gression classification (LCDRC) [18], SR-SLR [11], the least squares regression method (LSR)
[23], and robust low-rank regularized regression (RLR3) [17]. We list the recognition rate (in
percentage) obtained by all methods for comparisons. The recognition rate is a rate of the
number of the test samples being correctly identified to total test samples.

5.1. Results on the Yale database. The Yale database consists of 165 32 \times 32 pixel
cropped grayscale face images in GIF format of 15 individuals. There are 11 images per
person, one per different facial expression or configuration: center-light, w/glasses, happy;
left-light, w/no glasses, normal; right-light, sad, sleepy, surprised; and wink, as shown in
Figure 2. We randomly split the database into two parts: the first part is used as the training
sample set, and the other is used for testing. We will indicate the significance of the proposed
method by two experiments.

Experiment 1: We investigate the effect of different training sample sizes on the Yale
database. We choose the processed data sets in Deng1 [4]. For each subject, t(= 2, 3, 4, 5, 6)
samples are selected for training and the rest are used for testing. For a given t, there are 50
random splits. Set d = 200 for low-dimensional space. Table 1 summarizes the average results
over 50 runs. It is obvious that the DPRC consistently and visibly performs the best for all
selected values of t.

Experiment 2: We test the performance of the DPRC by increasing the dimension d
from 20 to 800, Figure 3 shows the average recognition rates of 50 runs on the Yale database.
The result shows that the recognition rate increases as the dimension increases. When the
dimension exceeds 200, the recognition rate tends to stabilize.

5.2. Results on the ORL database. The ORL database contains face images of 40 distinct
subjects captured at different time with variations in illumination, facial expression, and

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Table 1
The face recognition rates (\%) on the Yale database with t training samples per person.

Methods t = 2 t = 3 t = 4 t = 5 t = 6

SRC 53.17 62.00 67.50 71.97 74.85
CRC 55.67 67.03 72.95 78.53 81.01
LSR 59.40 70.30 76.13 80.73 82.77
LRC 46.77 55.78 60.24 64.88 67.49
LCDRC 58.66 69.36 74.80 77.84 78.53
LDRC 56.35 69.33 76.40 80.95 83.60
SR-SLR 56.81 67.25 74.57 79.66 81.41
ESRC 57.79 70.18 76.15 81.00 81.88
RLR3 55.61 66.98 73.10 78.56 81.01
DPRC 60.03 70.83 77.81 82.22 84.96

20 30 50 80 100 200 300 500 600 700 800

Dimension

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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c
c
u
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Figure 3. The recognition performance on dimensions of the low-dimensional subspace on the Yale database.

details (glasses). There are no restrictions imposed on the expression but the side movement
or tilt is controlled within 20 degrees, as shown in Figure 4. For each subject, we select
t(= 2, 3, 4, 5, 6) images for training, and the rest are used for testing. Table 2 shows the
average results over 50 runs. The methods ESRC, SLR, and SR-SLR significantly outperform
SRC, while our method (DPRC) consistently and visibly performs the best for all selected
values of t.

5.3. Results on the AR database. The AR database consists of over 3,000 frontal images
of 126 individuals. There are 26 images of each individual, taken at two different occasions [13].
The faces in the AR database contain variations such as illumination change, expressions, and
facial disguises (i.e., sunglasses or scarf). In each of two separate sessions, seven undisguised
images with expression or illumination variation, three images in sunglasses, and three images
in scarf disguise are taken from each subject. As suggested in [14], we select a subset consisting
of 2,600 images from 100 subjects (50 male and 50 female) in our experiments, and the images
are cropped with dimension 32\times 32, as shown in Figure 5. For each subject, we randomly select
t(= 2, 3, 4, 5, 6, 7, 8) images for training, and the rest for testing. The average results over 10
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Figure 4. Sample images in the ORL database with variations.

Table 2
The face recognition rate (\%) on the ORL database with t train samples per person.

Methods t = 2 t = 3 t = 4 t = 5 t = 6

SRC 78.16 85.99 90.45 92.76 94.30
CRC 80.47 87.15 91.39 93.46 94.85
LSR 81.21 87.50 91.56 93.91 95.18
LRC 70.70 81.52 88.05 91.81 93.86
LCDRC 78.58 87.10 91.55 93.54 96.62
LDRC 78.13 88.34 93.26 95.91 96.78
SR-SLR 81.28 88.81 93.33 95.52 96.46
ESRC 82.64 89.91 93.59 95.63 96.48
RLR3 81.19 87.61 91.78 93.94 95.26
DPRC 82.72 90.45 94.26 96.07 97.20

Figure 5. Sample images in the AR database with variations of expressions, illumination, and occlusions.
There are two rows of images corresponding to two sessions.

runs obtained by using different classification methods are shown in Table 3. Apparently, our
DPRC method achieves the best classification results in most cases, which also verifies that
the proposed method outperforms all the other classification methods under different training
conditions.

6. Conclusions. In this paper, we presented a DPRC framework for face recognition to
enhance the discriminant ability of the RC methods. The proposed framework first obtains a
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Table 3
The face recognition rate (\%) on the AR database with t training samples per person.

Methods t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

SRC 36.93 47.53 54.54 61.17 65.53 89.85 72.30
CRC 63.65 75.05 80.50 84.62 88.50 90.36 91.75
LSR 69.37 80.55 85.62 89.04 91.75 93.22 94.25
LRC 19.20 28.63 36.51 46.45 53.41 58.49 64.95
LCDRC 56.65 64.66 66.80 71.02 72.35 74.50 77.40
LDRC 56.48 74.67 82.91 88.79 91.73 93.82 94.91
SR-SLR 56.48 72.27 81.28 87.89 72.35 93.64 94.95
ESRC 56.15 69.79 75.43 81.60 85.51 87.29 89.38
RLR3 60.60 75.06 83.53 88.22 91.56 93.73 94.85
DPRC 69.71 82.27 87.54 91.37 93.51 95.37 95.50

discriminative projection matrix, which not only maximizes the ratio of the distance within
interclass over the distance within intraclass, but also minimizes the linear reconstruction er-
ror within intraclass. Then the original data are projected onto the discriminative projection
space, and the SRC method is adopted to obtain a final solution. An inexact ALM algo-
rithm has been proposed for solving the resulting optimization problem in our framework,
and a PAM method is adopted to the iteration subproblem of the inexact ALM. We proved
that the proposed inexact ALM algorithm has a subsequence convergence property. Exten-
sive experiments on publicly available face image databases showed that, compared to some
state-of-the-art representation-based classification methods, the proposed framework and op-
timization algorithm are advancement with high recognition rate.

Acknowledgments. The authors are very grateful to the referees and editor for their
helpful and constructive comments, which played an important role in improving this paper,
and also thanks so much to the authors of [17] for providing the source code of the RLR3

method.
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